| # Segmentation Map | |
|  | |
| The code is located in `vitonhd_seg.py`, and the parameters include | |
| ```python | |
| ## Dataset storage location | |
| parser.add_argument('--dataset_dir', type=str, default='/data/extern/vition-HD') | |
| # The required data includes:"densepose"、"image-parse-agnostic-v3.2"、"warped_mask" | |
| # Among them, warped_mask can be downloaded, with the file name sample and structure as follows: | |
| "sample/{test_paired/test_unpaired/train_paired}/mask" | |
| # Download the warped_mask to the dataset_dir directory | |
| """ | |
| The content that dataset_dir needs to include is as follows: | |
| dataset_dir | |
| |-- sample | |
| |-- train | |
| |-- test | |
| Among them, both train and test contain: | |
| |-- image-parse-agnostic-v3.2 | |
| |-- densepose | |
| The sample directory contains: | |
| sample | |
| |-- test_paired | |
| | `-- mask | |
| |-- test_unpaired | |
| | `-- mask | |
| `-- train_paired | |
| `-- mask | |
| """ | |
| ## Splitting dataset txt name | |
| parser.add_argument('--dataset_list', type=str, default='train_pairs_1018new.txt') | |
| # Save the position of the dataset sequence txt for train and test, where the internal content format of txt is: img cloth mode, for example: | |
| """ | |
| 12999_00.jpg 12999_00.jpg | |
| """ | |
| # Dataset splitting txt needs to be saved in the dataset_dir directory | |
| ## dataset_mode | |
| parser.add_argument('--dataset_mode', type=str, default='test') | |
| ## paired | |
| parser.add_argument('--paired', type=str, default='unpaired') | |
| ## Save location | |
| parser.add_argument('--save_dir', type=str, default='./results/') | |
| """ | |
| The file structure after saving all file outputs is: | |
| results/ | |
| |-- train | |
| | `-- warped_paired | |
| |-- test | |
| | `-- warped_paired | |
| | `-- warped_unpaired | |
| """ | |
| ``` | |
| The densepose images can be downloaded at: [Baidu Cloud](https://pan.baidu.com/s/13sRu-KVUdUUwwG-FfnSrBQ?pwd=kf0a). The warped mask is generated from the [GP-VTON](https://github.com/xiezhy6/GP-VTON.git). The other data sources is based on the [VITON-HD](https://github.com/shadow2496/VITON-HD) dataset. | |
| Data processing can run the script `vitonhd_seg.sh`, which requires three parameters. The first parameter is **dataset_list**, the second parameter is train/test, and the third parameter is **paid/unpaired**. For example: | |
| ```bash | |
| bash vitonhd_seg.sh test_pairs.txt test unpaired | |
| ``` | |
| Before running the script, it is necessary to modify the path corresponding to the script `vitonhd_seg.sh` to the path of one's own computer based on the local directory. | |
| # Highlighting Map | |
|  | |
| The code is located in `vitonhd_highlight.py`, and the parameters include | |
| ```python | |
| ## warped clothes dir | |
| parser.add_argument('--warped_path', type=str, default='/home/ock/aigc/GP-VTON-main/sample/viton_hd/train_paired/warped') | |
| ## warped masks dir | |
| parser.add_argument('--mask_path', type=str, default='/home/ock/aigc/GP-VTON-main/sample/viton_hd/train_paired/mask') | |
| ## output dir | |
| parser.add_argument('--output_folder', type=str, default='/home/ock/aigc/Try-On-old/highlight/train') | |
| ``` | |
| The warped cloth and mask pair is generated from the [GP-VTON](https://github.com/xiezhy6/GP-VTON.git). Data processing can run the file `vitonhd_highlight.py` . For example: | |
| ``` | |
| python data_preparation/vitonhd_highlight.py --warped_path A --mask_path B --output_folder C | |
| ``` | |