OwLim's picture
End of training
ee5c72e verified
metadata
library_name: transformers
license: mit
base_model: flax-community/indonesian-roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: indonesian-roberta-hate-speech-detection
    results: []

indonesian-roberta-hate-speech-detection

This model is a fine-tuned version of flax-community/indonesian-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4118
  • Accuracy: 0.826
  • Auc: 0.903
  • Precision: 0.8257
  • Recall: 0.8257
  • F1: 0.8256

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Auc Precision Recall F1
0.6653 1.0 188 0.5515 0.724 0.798 0.7243 0.7237 0.7238
0.5131 2.0 376 0.4578 0.783 0.875 0.7874 0.7830 0.7815
0.4307 3.0 564 0.4418 0.795 0.904 0.8137 0.7949 0.7928
0.3668 4.0 752 0.3804 0.835 0.916 0.8354 0.8349 0.8349
0.2991 5.0 940 0.4464 0.82 0.918 0.8345 0.8202 0.8190
0.2467 6.0 1128 0.4350 0.838 0.926 0.8482 0.8382 0.8375
0.2064 7.0 1316 0.4284 0.844 0.93 0.8515 0.8442 0.8438
0.1602 8.0 1504 0.4545 0.851 0.928 0.8520 0.8509 0.8509
0.1476 9.0 1692 0.4832 0.848 0.933 0.8545 0.8482 0.8479
0.117 10.0 1880 0.4632 0.855 0.932 0.8549 0.8549 0.8549
0.0925 11.0 2068 0.5501 0.86 0.933 0.8617 0.8602 0.8602
0.0811 12.0 2256 0.6097 0.849 0.933 0.8528 0.8489 0.8487
0.0702 13.0 2444 0.6568 0.85 0.933 0.8525 0.8495 0.8494
0.0588 14.0 2632 0.7092 0.844 0.93 0.8484 0.8442 0.8440
0.0572 15.0 2820 0.7012 0.855 0.933 0.8575 0.8549 0.8548
0.047 16.0 3008 0.7549 0.851 0.933 0.8545 0.8509 0.8507
0.0433 17.0 3196 0.7754 0.856 0.932 0.8593 0.8562 0.8561
0.044 18.0 3384 0.7868 0.85 0.932 0.8548 0.8502 0.8500
0.0408 19.0 3572 0.7890 0.855 0.932 0.8589 0.8549 0.8547
0.0412 20.0 3760 0.7870 0.855 0.932 0.8589 0.8549 0.8547

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1