bert-ner-conll2003

This model is a fine-tuned version of bert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0631
  • Precision: 0.9414
  • Recall: 0.9493
  • F1: 0.9454
  • Accuracy: 0.9866

Model description

from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModelForTokenClassification.from_pretrained("PassbyGrocer/bert-ner-conll2003")

nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "My name is Wolfgang and I live in Berlin."

ner_results = nlp(example)
print(ner_results)

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0844 1.0 878 0.0693 0.9029 0.9201 0.9114 0.9806
0.0216 2.0 1756 0.0559 0.9340 0.9444 0.9391 0.9854
0.0206 3.0 2634 0.0569 0.9436 0.9447 0.9442 0.9863
0.0141 4.0 3512 0.0634 0.9369 0.9488 0.9428 0.9860
0.0176 5.0 4390 0.0631 0.9414 0.9493 0.9454 0.9866

Framework versions

  • Transformers 4.46.1
  • Pytorch 1.13.1+cu116
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
10
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for PassbyGrocer/bert-ner-conll2003

Finetuned
(6227)
this model

Dataset used to train PassbyGrocer/bert-ner-conll2003

Evaluation results