PrabalAryal commited on
Commit
3734f29
·
verified ·
1 Parent(s): 61d64b1

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,497 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:68828
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
10
+ widget:
11
+ - source_sentence: Men is de toegangssleutels verloren
12
+ sentences:
13
+ - De centrale verwarming
14
+ - niet dringend
15
+ - Weg
16
+ - source_sentence: De bovenste constructie
17
+ sentences:
18
+ - Voldoende warm water in de hele woning
19
+ - daklekkage
20
+ - lek in kraan
21
+ - source_sentence: De box in het souterrain
22
+ sentences:
23
+ - Vloer
24
+ - lift niet
25
+ - Nood uitgang
26
+ - source_sentence: balkon
27
+ sentences:
28
+ - de brievenbus
29
+ - uitgang garage dicht
30
+ - afvoer de douche
31
+ - source_sentence: De deur naar de kelderboxen is stuk
32
+ sentences:
33
+ - deur met dranger
34
+ - De beugel om de plek vrij te houden
35
+ - kelderboxen deur
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - cosine_accuracy
40
+ - cosine_accuracy_threshold
41
+ - cosine_f1
42
+ - cosine_f1_threshold
43
+ - cosine_precision
44
+ - cosine_recall
45
+ - cosine_ap
46
+ - cosine_mcc
47
+ model-index:
48
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
49
+ results:
50
+ - task:
51
+ type: binary-classification
52
+ name: Binary Classification
53
+ dataset:
54
+ name: Unknown
55
+ type: unknown
56
+ metrics:
57
+ - type: cosine_accuracy
58
+ value: 0.982086820083682
59
+ name: Cosine Accuracy
60
+ - type: cosine_accuracy_threshold
61
+ value: 0.733125627040863
62
+ name: Cosine Accuracy Threshold
63
+ - type: cosine_f1
64
+ value: 0.9821498371335505
65
+ name: Cosine F1
66
+ - type: cosine_f1_threshold
67
+ value: 0.733125627040863
68
+ name: Cosine F1 Threshold
69
+ - type: cosine_precision
70
+ value: 0.9787068293949623
71
+ name: Cosine Precision
72
+ - type: cosine_recall
73
+ value: 0.9856171548117155
74
+ name: Cosine Recall
75
+ - type: cosine_ap
76
+ value: 0.9972864020390366
77
+ name: Cosine Ap
78
+ - type: cosine_mcc
79
+ value: 0.964197674565882
80
+ name: Cosine Mcc
81
+ ---
82
+
83
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
84
+
85
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
86
+
87
+ ## Model Details
88
+
89
+ ### Model Description
90
+ - **Model Type:** Sentence Transformer
91
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 86741b4e3f5cb7765a600d3a3d55a0f6a6cb443d -->
92
+ - **Maximum Sequence Length:** 64 tokens
93
+ - **Output Dimensionality:** 384 dimensions
94
+ - **Similarity Function:** Cosine Similarity
95
+ <!-- - **Training Dataset:** Unknown -->
96
+ <!-- - **Language:** Unknown -->
97
+ <!-- - **License:** Unknown -->
98
+
99
+ ### Model Sources
100
+
101
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
102
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
103
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
104
+
105
+ ### Full Model Architecture
106
+
107
+ ```
108
+ SentenceTransformer(
109
+ (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel
110
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
111
+ )
112
+ ```
113
+
114
+ ## Usage
115
+
116
+ ### Direct Usage (Sentence Transformers)
117
+
118
+ First install the Sentence Transformers library:
119
+
120
+ ```bash
121
+ pip install -U sentence-transformers
122
+ ```
123
+
124
+ Then you can load this model and run inference.
125
+ ```python
126
+ from sentence_transformers import SentenceTransformer
127
+
128
+ # Download from the 🤗 Hub
129
+ model = SentenceTransformer("PrabalAryal/Sentence_Transformer_v0.0.4")
130
+ # Run inference
131
+ sentences = [
132
+ 'De deur naar de kelderboxen is stuk',
133
+ 'kelderboxen deur',
134
+ 'deur met dranger',
135
+ ]
136
+ embeddings = model.encode(sentences)
137
+ print(embeddings.shape)
138
+ # [3, 384]
139
+
140
+ # Get the similarity scores for the embeddings
141
+ similarities = model.similarity(embeddings, embeddings)
142
+ print(similarities.shape)
143
+ # [3, 3]
144
+ ```
145
+
146
+ <!--
147
+ ### Direct Usage (Transformers)
148
+
149
+ <details><summary>Click to see the direct usage in Transformers</summary>
150
+
151
+ </details>
152
+ -->
153
+
154
+ <!--
155
+ ### Downstream Usage (Sentence Transformers)
156
+
157
+ You can finetune this model on your own dataset.
158
+
159
+ <details><summary>Click to expand</summary>
160
+
161
+ </details>
162
+ -->
163
+
164
+ <!--
165
+ ### Out-of-Scope Use
166
+
167
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
168
+ -->
169
+
170
+ ## Evaluation
171
+
172
+ ### Metrics
173
+
174
+ #### Binary Classification
175
+
176
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
177
+
178
+ | Metric | Value |
179
+ |:--------------------------|:-----------|
180
+ | cosine_accuracy | 0.9821 |
181
+ | cosine_accuracy_threshold | 0.7331 |
182
+ | cosine_f1 | 0.9821 |
183
+ | cosine_f1_threshold | 0.7331 |
184
+ | cosine_precision | 0.9787 |
185
+ | cosine_recall | 0.9856 |
186
+ | **cosine_ap** | **0.9973** |
187
+ | cosine_mcc | 0.9642 |
188
+
189
+ <!--
190
+ ## Bias, Risks and Limitations
191
+
192
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
193
+ -->
194
+
195
+ <!--
196
+ ### Recommendations
197
+
198
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
199
+ -->
200
+
201
+ ## Training Details
202
+
203
+ ### Training Dataset
204
+
205
+ #### Unnamed Dataset
206
+
207
+ * Size: 68,828 training samples
208
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
209
+ * Approximate statistics based on the first 1000 samples:
210
+ | | sentence_0 | sentence_1 | label |
211
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
212
+ | type | string | string | float |
213
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.03 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.41 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> |
214
+ * Samples:
215
+ | sentence_0 | sentence_1 | label |
216
+ |:------------------------------------------------------|:-------------------------|:-----------------|
217
+ | <code>De sluiting van de toegangspoort is stuk</code> | <code>slot defect</code> | <code>1.0</code> |
218
+ | <code>Woning</code> | <code>trapafgang</code> | <code>0.0</code> |
219
+ | <code>De sleutels zijn kwijt</code> | <code>Nie</code> | <code>0.0</code> |
220
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
221
+ ```json
222
+ {
223
+ "scale": 20.0,
224
+ "similarity_fct": "cos_sim"
225
+ }
226
+ ```
227
+
228
+ ### Training Hyperparameters
229
+ #### Non-Default Hyperparameters
230
+
231
+ - `eval_strategy`: steps
232
+ - `per_device_train_batch_size`: 64
233
+ - `per_device_eval_batch_size`: 64
234
+ - `num_train_epochs`: 10
235
+ - `fp16`: True
236
+ - `multi_dataset_batch_sampler`: round_robin
237
+
238
+ #### All Hyperparameters
239
+ <details><summary>Click to expand</summary>
240
+
241
+ - `overwrite_output_dir`: False
242
+ - `do_predict`: False
243
+ - `eval_strategy`: steps
244
+ - `prediction_loss_only`: True
245
+ - `per_device_train_batch_size`: 64
246
+ - `per_device_eval_batch_size`: 64
247
+ - `per_gpu_train_batch_size`: None
248
+ - `per_gpu_eval_batch_size`: None
249
+ - `gradient_accumulation_steps`: 1
250
+ - `eval_accumulation_steps`: None
251
+ - `torch_empty_cache_steps`: None
252
+ - `learning_rate`: 5e-05
253
+ - `weight_decay`: 0.0
254
+ - `adam_beta1`: 0.9
255
+ - `adam_beta2`: 0.999
256
+ - `adam_epsilon`: 1e-08
257
+ - `max_grad_norm`: 1
258
+ - `num_train_epochs`: 10
259
+ - `max_steps`: -1
260
+ - `lr_scheduler_type`: linear
261
+ - `lr_scheduler_kwargs`: {}
262
+ - `warmup_ratio`: 0.0
263
+ - `warmup_steps`: 0
264
+ - `log_level`: passive
265
+ - `log_level_replica`: warning
266
+ - `log_on_each_node`: True
267
+ - `logging_nan_inf_filter`: True
268
+ - `save_safetensors`: True
269
+ - `save_on_each_node`: False
270
+ - `save_only_model`: False
271
+ - `restore_callback_states_from_checkpoint`: False
272
+ - `no_cuda`: False
273
+ - `use_cpu`: False
274
+ - `use_mps_device`: False
275
+ - `seed`: 42
276
+ - `data_seed`: None
277
+ - `jit_mode_eval`: False
278
+ - `use_ipex`: False
279
+ - `bf16`: False
280
+ - `fp16`: True
281
+ - `fp16_opt_level`: O1
282
+ - `half_precision_backend`: auto
283
+ - `bf16_full_eval`: False
284
+ - `fp16_full_eval`: False
285
+ - `tf32`: None
286
+ - `local_rank`: 0
287
+ - `ddp_backend`: None
288
+ - `tpu_num_cores`: None
289
+ - `tpu_metrics_debug`: False
290
+ - `debug`: []
291
+ - `dataloader_drop_last`: False
292
+ - `dataloader_num_workers`: 0
293
+ - `dataloader_prefetch_factor`: None
294
+ - `past_index`: -1
295
+ - `disable_tqdm`: False
296
+ - `remove_unused_columns`: True
297
+ - `label_names`: None
298
+ - `load_best_model_at_end`: False
299
+ - `ignore_data_skip`: False
300
+ - `fsdp`: []
301
+ - `fsdp_min_num_params`: 0
302
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
303
+ - `fsdp_transformer_layer_cls_to_wrap`: None
304
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
305
+ - `deepspeed`: None
306
+ - `label_smoothing_factor`: 0.0
307
+ - `optim`: adamw_torch
308
+ - `optim_args`: None
309
+ - `adafactor`: False
310
+ - `group_by_length`: False
311
+ - `length_column_name`: length
312
+ - `ddp_find_unused_parameters`: None
313
+ - `ddp_bucket_cap_mb`: None
314
+ - `ddp_broadcast_buffers`: False
315
+ - `dataloader_pin_memory`: True
316
+ - `dataloader_persistent_workers`: False
317
+ - `skip_memory_metrics`: True
318
+ - `use_legacy_prediction_loop`: False
319
+ - `push_to_hub`: False
320
+ - `resume_from_checkpoint`: None
321
+ - `hub_model_id`: None
322
+ - `hub_strategy`: every_save
323
+ - `hub_private_repo`: None
324
+ - `hub_always_push`: False
325
+ - `hub_revision`: None
326
+ - `gradient_checkpointing`: False
327
+ - `gradient_checkpointing_kwargs`: None
328
+ - `include_inputs_for_metrics`: False
329
+ - `include_for_metrics`: []
330
+ - `eval_do_concat_batches`: True
331
+ - `fp16_backend`: auto
332
+ - `push_to_hub_model_id`: None
333
+ - `push_to_hub_organization`: None
334
+ - `mp_parameters`:
335
+ - `auto_find_batch_size`: False
336
+ - `full_determinism`: False
337
+ - `torchdynamo`: None
338
+ - `ray_scope`: last
339
+ - `ddp_timeout`: 1800
340
+ - `torch_compile`: False
341
+ - `torch_compile_backend`: None
342
+ - `torch_compile_mode`: None
343
+ - `include_tokens_per_second`: False
344
+ - `include_num_input_tokens_seen`: False
345
+ - `neftune_noise_alpha`: None
346
+ - `optim_target_modules`: None
347
+ - `batch_eval_metrics`: False
348
+ - `eval_on_start`: False
349
+ - `use_liger_kernel`: False
350
+ - `liger_kernel_config`: None
351
+ - `eval_use_gather_object`: False
352
+ - `average_tokens_across_devices`: False
353
+ - `prompts`: None
354
+ - `batch_sampler`: batch_sampler
355
+ - `multi_dataset_batch_sampler`: round_robin
356
+
357
+ </details>
358
+
359
+ ### Training Logs
360
+ | Epoch | Step | Training Loss | cosine_ap |
361
+ |:------:|:-----:|:-------------:|:---------:|
362
+ | 0.1998 | 215 | - | 0.7638 |
363
+ | 0.3996 | 430 | - | 0.8723 |
364
+ | 0.4647 | 500 | 4.4585 | - |
365
+ | 0.5994 | 645 | - | 0.9176 |
366
+ | 0.7993 | 860 | - | 0.9475 |
367
+ | 0.9294 | 1000 | 3.6015 | - |
368
+ | 0.9991 | 1075 | - | 0.9595 |
369
+ | 1.0 | 1076 | - | 0.9593 |
370
+ | 1.1989 | 1290 | - | 0.9705 |
371
+ | 1.3941 | 1500 | 3.3729 | - |
372
+ | 1.3987 | 1505 | - | 0.9793 |
373
+ | 1.5985 | 1720 | - | 0.9818 |
374
+ | 1.7983 | 1935 | - | 0.9854 |
375
+ | 1.8587 | 2000 | 3.2631 | - |
376
+ | 1.9981 | 2150 | - | 0.9866 |
377
+ | 2.0 | 2152 | - | 0.9866 |
378
+ | 2.1980 | 2365 | - | 0.9890 |
379
+ | 2.3234 | 2500 | 3.1295 | - |
380
+ | 2.3978 | 2580 | - | 0.9884 |
381
+ | 2.5976 | 2795 | - | 0.9916 |
382
+ | 2.7881 | 3000 | 3.0907 | - |
383
+ | 2.7974 | 3010 | - | 0.9916 |
384
+ | 2.9972 | 3225 | - | 0.9922 |
385
+ | 3.0 | 3228 | - | 0.9922 |
386
+ | 3.1970 | 3440 | - | 0.9928 |
387
+ | 3.2528 | 3500 | 3.0105 | - |
388
+ | 3.3968 | 3655 | - | 0.9932 |
389
+ | 3.5967 | 3870 | - | 0.9937 |
390
+ | 3.7175 | 4000 | 2.977 | - |
391
+ | 3.7965 | 4085 | - | 0.9939 |
392
+ | 3.9963 | 4300 | - | 0.9944 |
393
+ | 4.0 | 4304 | - | 0.9945 |
394
+ | 4.1822 | 4500 | 2.9488 | - |
395
+ | 4.1961 | 4515 | - | 0.9947 |
396
+ | 4.3959 | 4730 | - | 0.9950 |
397
+ | 4.5957 | 4945 | - | 0.9952 |
398
+ | 4.6468 | 5000 | 2.914 | - |
399
+ | 4.7955 | 5160 | - | 0.9954 |
400
+ | 4.9954 | 5375 | - | 0.9956 |
401
+ | 5.0 | 5380 | - | 0.9956 |
402
+ | 5.1115 | 5500 | 2.8927 | - |
403
+ | 5.1952 | 5590 | - | 0.9960 |
404
+ | 5.3950 | 5805 | - | 0.9959 |
405
+ | 5.5762 | 6000 | 2.8505 | - |
406
+ | 5.5948 | 6020 | - | 0.9963 |
407
+ | 5.7946 | 6235 | - | 0.9961 |
408
+ | 5.9944 | 6450 | - | 0.9962 |
409
+ | 6.0 | 6456 | - | 0.9962 |
410
+ | 6.0409 | 6500 | 2.8462 | - |
411
+ | 6.1942 | 6665 | - | 0.9963 |
412
+ | 6.3941 | 6880 | - | 0.9965 |
413
+ | 6.5056 | 7000 | 2.8024 | - |
414
+ | 6.5939 | 7095 | - | 0.9967 |
415
+ | 6.7937 | 7310 | - | 0.9969 |
416
+ | 6.9703 | 7500 | 2.8184 | - |
417
+ | 6.9935 | 7525 | - | 0.9968 |
418
+ | 7.0 | 7532 | - | 0.9967 |
419
+ | 7.1933 | 7740 | - | 0.9967 |
420
+ | 7.3931 | 7955 | - | 0.9967 |
421
+ | 7.4349 | 8000 | 2.7761 | - |
422
+ | 7.5929 | 8170 | - | 0.9968 |
423
+ | 7.7928 | 8385 | - | 0.9969 |
424
+ | 7.8996 | 8500 | 2.7736 | - |
425
+ | 7.9926 | 8600 | - | 0.9970 |
426
+ | 8.0 | 8608 | - | 0.9971 |
427
+ | 8.1924 | 8815 | - | 0.9972 |
428
+ | 8.3643 | 9000 | 2.7627 | - |
429
+ | 8.3922 | 9030 | - | 0.9970 |
430
+ | 8.5920 | 9245 | - | 0.9972 |
431
+ | 8.7918 | 9460 | - | 0.9972 |
432
+ | 8.8290 | 9500 | 2.7604 | - |
433
+ | 8.9916 | 9675 | - | 0.9972 |
434
+ | 9.0 | 9684 | - | 0.9972 |
435
+ | 9.1914 | 9890 | - | 0.9971 |
436
+ | 9.2937 | 10000 | 2.7467 | - |
437
+ | 9.3913 | 10105 | - | 0.9972 |
438
+ | 9.5911 | 10320 | - | 0.9973 |
439
+ | 9.7584 | 10500 | 2.7441 | - |
440
+ | 9.7909 | 10535 | - | 0.9973 |
441
+
442
+
443
+ ### Framework Versions
444
+ - Python: 3.11.13
445
+ - Sentence Transformers: 4.1.0
446
+ - Transformers: 4.53.3
447
+ - PyTorch: 2.6.0+cu124
448
+ - Accelerate: 1.9.0
449
+ - Datasets: 4.4.1
450
+ - Tokenizers: 0.21.2
451
+
452
+ ## Citation
453
+
454
+ ### BibTeX
455
+
456
+ #### Sentence Transformers
457
+ ```bibtex
458
+ @inproceedings{reimers-2019-sentence-bert,
459
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
460
+ author = "Reimers, Nils and Gurevych, Iryna",
461
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
462
+ month = "11",
463
+ year = "2019",
464
+ publisher = "Association for Computational Linguistics",
465
+ url = "https://arxiv.org/abs/1908.10084",
466
+ }
467
+ ```
468
+
469
+ #### MultipleNegativesRankingLoss
470
+ ```bibtex
471
+ @misc{henderson2017efficient,
472
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
473
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
474
+ year={2017},
475
+ eprint={1705.00652},
476
+ archivePrefix={arXiv},
477
+ primaryClass={cs.CL}
478
+ }
479
+ ```
480
+
481
+ <!--
482
+ ## Glossary
483
+
484
+ *Clearly define terms in order to be accessible across audiences.*
485
+ -->
486
+
487
+ <!--
488
+ ## Model Card Authors
489
+
490
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
491
+ -->
492
+
493
+ <!--
494
+ ## Model Card Contact
495
+
496
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
497
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.53.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 250037
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.53.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2afff4f9725088bc87e785545f7267fa11e3322962d97ba386cd61b30e25c549
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 64,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc5c1151948923156f20bcafd54fd796705d693f8d7b56c83aec49d651f6d602
3
+ size 17082986
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 64,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260