SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("PrabalAryal/Sentence_Transformer_v0.0.4")
# Run inference
sentences = [
    'De deur naar de kelderboxen is stuk',
    'kelderboxen deur',
    'deur met dranger',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.9821
cosine_accuracy_threshold 0.7331
cosine_f1 0.9821
cosine_f1_threshold 0.7331
cosine_precision 0.9787
cosine_recall 0.9856
cosine_ap 0.9973
cosine_mcc 0.9642

Training Details

Training Dataset

Unnamed Dataset

  • Size: 68,828 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 3 tokens
    • mean: 7.03 tokens
    • max: 21 tokens
    • min: 3 tokens
    • mean: 6.41 tokens
    • max: 18 tokens
    • min: 0.0
    • mean: 0.49
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    De sluiting van de toegangspoort is stuk slot defect 1.0
    Woning trapafgang 0.0
    De sleutels zijn kwijt Nie 0.0
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • num_train_epochs: 10
  • fp16: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss cosine_ap
0.1998 215 - 0.7638
0.3996 430 - 0.8723
0.4647 500 4.4585 -
0.5994 645 - 0.9176
0.7993 860 - 0.9475
0.9294 1000 3.6015 -
0.9991 1075 - 0.9595
1.0 1076 - 0.9593
1.1989 1290 - 0.9705
1.3941 1500 3.3729 -
1.3987 1505 - 0.9793
1.5985 1720 - 0.9818
1.7983 1935 - 0.9854
1.8587 2000 3.2631 -
1.9981 2150 - 0.9866
2.0 2152 - 0.9866
2.1980 2365 - 0.9890
2.3234 2500 3.1295 -
2.3978 2580 - 0.9884
2.5976 2795 - 0.9916
2.7881 3000 3.0907 -
2.7974 3010 - 0.9916
2.9972 3225 - 0.9922
3.0 3228 - 0.9922
3.1970 3440 - 0.9928
3.2528 3500 3.0105 -
3.3968 3655 - 0.9932
3.5967 3870 - 0.9937
3.7175 4000 2.977 -
3.7965 4085 - 0.9939
3.9963 4300 - 0.9944
4.0 4304 - 0.9945
4.1822 4500 2.9488 -
4.1961 4515 - 0.9947
4.3959 4730 - 0.9950
4.5957 4945 - 0.9952
4.6468 5000 2.914 -
4.7955 5160 - 0.9954
4.9954 5375 - 0.9956
5.0 5380 - 0.9956
5.1115 5500 2.8927 -
5.1952 5590 - 0.9960
5.3950 5805 - 0.9959
5.5762 6000 2.8505 -
5.5948 6020 - 0.9963
5.7946 6235 - 0.9961
5.9944 6450 - 0.9962
6.0 6456 - 0.9962
6.0409 6500 2.8462 -
6.1942 6665 - 0.9963
6.3941 6880 - 0.9965
6.5056 7000 2.8024 -
6.5939 7095 - 0.9967
6.7937 7310 - 0.9969
6.9703 7500 2.8184 -
6.9935 7525 - 0.9968
7.0 7532 - 0.9967
7.1933 7740 - 0.9967
7.3931 7955 - 0.9967
7.4349 8000 2.7761 -
7.5929 8170 - 0.9968
7.7928 8385 - 0.9969
7.8996 8500 2.7736 -
7.9926 8600 - 0.9970
8.0 8608 - 0.9971
8.1924 8815 - 0.9972
8.3643 9000 2.7627 -
8.3922 9030 - 0.9970
8.5920 9245 - 0.9972
8.7918 9460 - 0.9972
8.8290 9500 2.7604 -
8.9916 9675 - 0.9972
9.0 9684 - 0.9972
9.1914 9890 - 0.9971
9.2937 10000 2.7467 -
9.3913 10105 - 0.9972
9.5911 10320 - 0.9973
9.7584 10500 2.7441 -
9.7909 10535 - 0.9973

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.53.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.9.0
  • Datasets: 4.4.1
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
45
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for PrabalAryal/Sentence_Transformer_v0.0.4

Evaluation results