SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 64 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("PrabalAryal/Sentence_Transformer_v0.0.4")
# Run inference
sentences = [
'De deur naar de kelderboxen is stuk',
'kelderboxen deur',
'deur met dranger',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9821 |
| cosine_accuracy_threshold | 0.7331 |
| cosine_f1 | 0.9821 |
| cosine_f1_threshold | 0.7331 |
| cosine_precision | 0.9787 |
| cosine_recall | 0.9856 |
| cosine_ap | 0.9973 |
| cosine_mcc | 0.9642 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 68,828 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 7.03 tokens
- max: 21 tokens
- min: 3 tokens
- mean: 6.41 tokens
- max: 18 tokens
- min: 0.0
- mean: 0.49
- max: 1.0
- Samples:
sentence_0 sentence_1 label De sluiting van de toegangspoort is stukslot defect1.0Woningtrapafgang0.0De sleutels zijn kwijtNie0.0 - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64num_train_epochs: 10fp16: Truemulti_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 10max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss | cosine_ap |
|---|---|---|---|
| 0.1998 | 215 | - | 0.7638 |
| 0.3996 | 430 | - | 0.8723 |
| 0.4647 | 500 | 4.4585 | - |
| 0.5994 | 645 | - | 0.9176 |
| 0.7993 | 860 | - | 0.9475 |
| 0.9294 | 1000 | 3.6015 | - |
| 0.9991 | 1075 | - | 0.9595 |
| 1.0 | 1076 | - | 0.9593 |
| 1.1989 | 1290 | - | 0.9705 |
| 1.3941 | 1500 | 3.3729 | - |
| 1.3987 | 1505 | - | 0.9793 |
| 1.5985 | 1720 | - | 0.9818 |
| 1.7983 | 1935 | - | 0.9854 |
| 1.8587 | 2000 | 3.2631 | - |
| 1.9981 | 2150 | - | 0.9866 |
| 2.0 | 2152 | - | 0.9866 |
| 2.1980 | 2365 | - | 0.9890 |
| 2.3234 | 2500 | 3.1295 | - |
| 2.3978 | 2580 | - | 0.9884 |
| 2.5976 | 2795 | - | 0.9916 |
| 2.7881 | 3000 | 3.0907 | - |
| 2.7974 | 3010 | - | 0.9916 |
| 2.9972 | 3225 | - | 0.9922 |
| 3.0 | 3228 | - | 0.9922 |
| 3.1970 | 3440 | - | 0.9928 |
| 3.2528 | 3500 | 3.0105 | - |
| 3.3968 | 3655 | - | 0.9932 |
| 3.5967 | 3870 | - | 0.9937 |
| 3.7175 | 4000 | 2.977 | - |
| 3.7965 | 4085 | - | 0.9939 |
| 3.9963 | 4300 | - | 0.9944 |
| 4.0 | 4304 | - | 0.9945 |
| 4.1822 | 4500 | 2.9488 | - |
| 4.1961 | 4515 | - | 0.9947 |
| 4.3959 | 4730 | - | 0.9950 |
| 4.5957 | 4945 | - | 0.9952 |
| 4.6468 | 5000 | 2.914 | - |
| 4.7955 | 5160 | - | 0.9954 |
| 4.9954 | 5375 | - | 0.9956 |
| 5.0 | 5380 | - | 0.9956 |
| 5.1115 | 5500 | 2.8927 | - |
| 5.1952 | 5590 | - | 0.9960 |
| 5.3950 | 5805 | - | 0.9959 |
| 5.5762 | 6000 | 2.8505 | - |
| 5.5948 | 6020 | - | 0.9963 |
| 5.7946 | 6235 | - | 0.9961 |
| 5.9944 | 6450 | - | 0.9962 |
| 6.0 | 6456 | - | 0.9962 |
| 6.0409 | 6500 | 2.8462 | - |
| 6.1942 | 6665 | - | 0.9963 |
| 6.3941 | 6880 | - | 0.9965 |
| 6.5056 | 7000 | 2.8024 | - |
| 6.5939 | 7095 | - | 0.9967 |
| 6.7937 | 7310 | - | 0.9969 |
| 6.9703 | 7500 | 2.8184 | - |
| 6.9935 | 7525 | - | 0.9968 |
| 7.0 | 7532 | - | 0.9967 |
| 7.1933 | 7740 | - | 0.9967 |
| 7.3931 | 7955 | - | 0.9967 |
| 7.4349 | 8000 | 2.7761 | - |
| 7.5929 | 8170 | - | 0.9968 |
| 7.7928 | 8385 | - | 0.9969 |
| 7.8996 | 8500 | 2.7736 | - |
| 7.9926 | 8600 | - | 0.9970 |
| 8.0 | 8608 | - | 0.9971 |
| 8.1924 | 8815 | - | 0.9972 |
| 8.3643 | 9000 | 2.7627 | - |
| 8.3922 | 9030 | - | 0.9970 |
| 8.5920 | 9245 | - | 0.9972 |
| 8.7918 | 9460 | - | 0.9972 |
| 8.8290 | 9500 | 2.7604 | - |
| 8.9916 | 9675 | - | 0.9972 |
| 9.0 | 9684 | - | 0.9972 |
| 9.1914 | 9890 | - | 0.9971 |
| 9.2937 | 10000 | 2.7467 | - |
| 9.3913 | 10105 | - | 0.9972 |
| 9.5911 | 10320 | - | 0.9973 |
| 9.7584 | 10500 | 2.7441 | - |
| 9.7909 | 10535 | - | 0.9973 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.53.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.4.1
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 45
Model tree for PrabalAryal/Sentence_Transformer_v0.0.4
Evaluation results
- Cosine Accuracy on Unknownself-reported0.982
- Cosine Accuracy Threshold on Unknownself-reported0.733
- Cosine F1 on Unknownself-reported0.982
- Cosine F1 Threshold on Unknownself-reported0.733
- Cosine Precision on Unknownself-reported0.979
- Cosine Recall on Unknownself-reported0.986
- Cosine Ap on Unknownself-reported0.997
- Cosine Mcc on Unknownself-reported0.964