QomSSLab/Verdict_Splitter
This repository hosts an XLM-RoBERTa token-classification head trained.
Usage
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
model_id = "QomSSLab/Verdict_Splitter"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForTokenClassification.from_pretrained(model_id)
tagger = pipeline("token-classification", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
text = "مثال از یک ورودی فارسی"
for entity in tagger(text):
print(entity)
Labels
Oاستدلالتصمیمخارجخلعمقدمهپایانی
Metrics
Validation Metrics
- Precision: 0.7430
- Recall: 0.8457
- F1: 0.7910
- Accuracy: 0.9545
Per-label Breakdown
| Label | Precision | Recall | F1 | Support |
|---|---|---|---|---|
| O | 0.8468 | 0.7995 | 0.8225 | 394 |
| استدلال | 0.9754 | 0.8776 | 0.9239 | 6635 |
| تصمیم | 0.9917 | 0.9608 | 0.9760 | 5361 |
| خارج | 1.0000 | 1.0000 | 1.0000 | 0 |
| خلع | 1.0000 | 1.0000 | 1.0000 | 0 |
| مقدمه | 0.9279 | 0.9982 | 0.9618 | 10871 |
| پایانی | 0.9728 | 0.9902 | 0.9814 | 1732 |
- Downloads last month
- 32