|
|
--- |
|
|
license: apache-2.0 |
|
|
datasets: |
|
|
- Anthropic/hh-rlhf |
|
|
language: |
|
|
- en |
|
|
pipeline_tag: text-generation |
|
|
--- |
|
|
|
|
|
|
|
|
# GPT-2 Medium SFT and DPO on Anthropic-hh Dataset |
|
|
|
|
|
This repository GPT-2 Medium model instruct tuned first on the Anthropic-hh dataset and then further aligned on the same dataset with DPO. |
|
|
|
|
|
## Model Information |
|
|
|
|
|
- **Model Name:** RaushanTurganbay/GPT2_sft_and_dpo_tuned |
|
|
- **Base Model:** GPT-2 Medium |
|
|
- **Training Data:** Anthropic-hh dataset |
|
|
- **Fine-Tuning Approach:** Direct Preference Optiization (DPO) |
|
|
|
|
|
## How to Use |
|
|
|
|
|
|
|
|
```python |
|
|
import torch |
|
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer, StoppingCriteria, StoppingCriteriaList |
|
|
|
|
|
tokenizer_dpo = GPT2Tokenizer.from_pretrained("RaushanTurganbay/GPT2_sft_and_dpo_tuned") |
|
|
model_dpo = GPT2LMHeadModel.from_pretrained("RaushanTurganbay/GPT2_sft_and_dpo_tuned") |
|
|
|
|
|
class StoppingCriteriaSub(StoppingCriteria): |
|
|
def __init__(self, stops=[], encounters=1): |
|
|
super().__init__() |
|
|
self.stops = [stop.to("cuda") for stop in stops] |
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor): |
|
|
for stop in self.stops: |
|
|
if torch.all((stop == input_ids[0][-len(stop):])).item(): |
|
|
return True |
|
|
return False |
|
|
|
|
|
|
|
|
def stopping_criteria(tokenizer, stop_words): |
|
|
stop_words_ids = [tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words] |
|
|
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)]) |
|
|
return stopping_criteria |
|
|
|
|
|
|
|
|
# Generate responses |
|
|
stopping = stopping_criteria(tokenizer, ["\n\nHuman:"]) |
|
|
prompt = "\n\nHuman: {your_instruction}\n\nAssistant:" |
|
|
inputs_dpo = tokenizer_dpo(prompt, return_tensors="pt") |
|
|
outputs_dpo = model_dpo.generate(**inputs_dpo, stopping_criteria=stopping, max_length=150) |
|
|
|
|
|
print("Model Response:", tokenizer_dpo.batch_decode(outputs_dpo)) |
|
|
``` |
|
|
|
|
|
|