YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
NeuralDaredevil-7B - bnb 4bits
- Model creator: https://huggingface.co/mlabonne/
- Original model: https://huggingface.co/mlabonne/NeuralDaredevil-7B/
Original model description:
license: cc-by-nc-4.0 tags: - merge - mergekit - lazymergekit - dpo - rlhf - mlabonne/example base_model: mlabonne/Daredevil-7B model-index: - name: NeuralDaredevil-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.88 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralDaredevil-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.62 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralDaredevil-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.12 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralDaredevil-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 66.85 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralDaredevil-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.08 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralDaredevil-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 73.16 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralDaredevil-7B name: Open LLM Leaderboard
NeuralDaredevil-7B
NeuralDaredevil-7B is a DPO fine-tune of mlabonne/Daredevil-7B using the argilla/distilabel-intel-orca-dpo-pairs preference dataset and my DPO notebook from this article.
Thanks Argilla for providing the dataset and the training recipe here. 馃挭
馃弳 Evaluation
Nous
The evaluation was performed using LLM AutoEval on Nous suite.
| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---|---|---|---|---|
| mlabonne/NeuralDaredevil-7B 馃搫 | 59.39 | 45.23 | 76.2 | 67.61 | 48.52 |
| mlabonne/Beagle14-7B 馃搫 | 59.4 | 44.38 | 76.53 | 69.44 | 47.25 |
| argilla/distilabeled-Marcoro14-7B-slerp 馃搫 | 58.93 | 45.38 | 76.48 | 65.68 | 48.18 |
| mlabonne/NeuralMarcoro14-7B 馃搫 | 58.4 | 44.59 | 76.17 | 65.94 | 46.9 |
| openchat/openchat-3.5-0106 馃搫 | 53.71 | 44.17 | 73.72 | 52.53 | 44.4 |
| teknium/OpenHermes-2.5-Mistral-7B 馃搫 | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
You can find the complete benchmark on YALL - Yet Another LLM Leaderboard.
Open LLM Leaderboard
Detailed results can be found here
| Metric | Value |
|---|---|
| Avg. | 74.12 |
| AI2 Reasoning Challenge (25-Shot) | 69.88 |
| HellaSwag (10-Shot) | 87.62 |
| MMLU (5-Shot) | 65.12 |
| TruthfulQA (0-shot) | 66.85 |
| Winogrande (5-shot) | 82.08 |
| GSM8k (5-shot) | 73.16 |
馃捇 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/NeuralDaredevil-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- -
