Rziane's picture
End of training
d66be39 verified
metadata
library_name: transformers
language:
  - fr
license: mit
base_model: pyannote/segmentation-3.0
tags:
  - speaker-diarization
  - speaker-segmentation
  - generated_from_trainer
datasets:
  - MPF
model-index:
  - name: speaker-segmentation-ft-mpf
    results: []

speaker-segmentation-ft-mpf

This model is a fine-tuned version of pyannote/segmentation-3.0 on the MPF dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8806
  • Model Preparation Time: 0.004
  • Der: 0.3412
  • False Alarm: 0.0953
  • Missed Detection: 0.1247
  • Confusion: 0.1211

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Der False Alarm Missed Detection Confusion
0.9823 1.0 1302 0.9267 0.004 0.3729 0.0896 0.1466 0.1367
0.9422 2.0 2604 0.9247 0.004 0.3695 0.0991 0.1282 0.1422
0.915 3.0 3906 0.8984 0.004 0.3549 0.0878 0.1397 0.1273
0.8706 4.0 5208 0.9055 0.004 0.3543 0.1036 0.1171 0.1336
0.8511 5.0 6510 0.8776 0.004 0.3424 0.0932 0.1279 0.1213
0.834 6.0 7812 0.8896 0.004 0.3485 0.1004 0.1220 0.1261
0.8505 7.0 9114 0.8777 0.004 0.3418 0.0959 0.1260 0.1199
0.8452 8.0 10416 0.8802 0.004 0.3430 0.0975 0.1246 0.1209
0.837 9.0 11718 0.8792 0.004 0.3407 0.0950 0.1247 0.1211
0.8459 10.0 13020 0.8806 0.004 0.3412 0.0953 0.1247 0.1211

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0