File size: 2,984 Bytes
5f418b2 8e679a9 5f418b2 8e679a9 5f418b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- minecraft
- mineflayer
- code-generation
- gaming
license: apache-2.0
language:
- en
---
# Minecraft Bot Code Generation Model
A specialized LLaMA 3.2 model fine-tuned to generate Mineflayer-compatible JavaScript code for Minecraft bot automation.
## Model Description
This model generates executable JavaScript code using the [Mineflayer](https://github.com/PrismarineJS/mineflayer) API to create intelligent Minecraft bots. It can produce code for various bot behaviors including mining, building, combat, navigation, and server interaction.
## Data Creation Process
1. **Source Dataset**: [MineDojo](https://minedojo.org/) - A comprehensive dataset containing Minecraft gameplay data, tutorials, and documentation
2. **QA Generation**: MineDojo data was processed through LLaMA Scout model hosted on Groq to generate question-answer pairs focused on Minecraft bot programming scenarios
3. **Data Refinement**: Generated QA pairs were further processed using ChatComplete by Unstip for quality improvement
4. **Fine-tuning**: The curated dataset was used to fine-tune LLaMA 3.2 3B using Unsloth for 2x faster training
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("SanthoshToorpu/minecraft-bot-model")
model = AutoModelForCausalLM.from_pretrained("SanthoshToorpu/minecraft-bot-model")
prompt = "Create a bot that automatically farms wheat"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
code = tokenizer.decode(outputs[0], skip_special_tokens=True)
```
## Capabilities
- **Movement & Navigation**: Pathfinding, exploration, terrain traversal
- **Resource Management**: Mining, crafting, inventory organization
- **Building & Construction**: Automated structure creation
- **Combat Systems**: PvP and PvE bot behaviors
- **Server Integration**: Chat commands, multiplayer coordination
## Training Details
This model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Hugging Face's TRL library.
## References
- [MineDojo Dataset](https://minedojo.org/)
- [MineDojo Paper](https://arxiv.org/abs/2206.08853)
- [Mineflayer Documentation](https://github.com/PrismarineJS/mineflayer)
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
# Uploaded model
- **Developed by:** SanthoshToorpu
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|