File size: 2,984 Bytes
5f418b2
 
 
 
 
 
 
 
8e679a9
 
 
 
5f418b2
 
 
 
 
8e679a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f418b2
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- minecraft
- mineflayer
- code-generation
- gaming
license: apache-2.0
language:
- en
---

# Minecraft Bot Code Generation Model
A specialized LLaMA 3.2 model fine-tuned to generate Mineflayer-compatible JavaScript code for Minecraft bot automation.

## Model Description

This model generates executable JavaScript code using the [Mineflayer](https://github.com/PrismarineJS/mineflayer) API to create intelligent Minecraft bots. It can produce code for various bot behaviors including mining, building, combat, navigation, and server interaction.

## Data Creation Process

1. **Source Dataset**: [MineDojo](https://minedojo.org/) - A comprehensive dataset containing Minecraft gameplay data, tutorials, and documentation
2. **QA Generation**: MineDojo data was processed through LLaMA Scout model hosted on Groq to generate question-answer pairs focused on Minecraft bot programming scenarios  
3. **Data Refinement**: Generated QA pairs were further processed using ChatComplete by Unstip for quality improvement
4. **Fine-tuning**: The curated dataset was used to fine-tune LLaMA 3.2 3B using Unsloth for 2x faster training

## Usage

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("SanthoshToorpu/minecraft-bot-model")
model = AutoModelForCausalLM.from_pretrained("SanthoshToorpu/minecraft-bot-model")

prompt = "Create a bot that automatically farms wheat"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
code = tokenizer.decode(outputs[0], skip_special_tokens=True)
```

## Capabilities

- **Movement & Navigation**: Pathfinding, exploration, terrain traversal
- **Resource Management**: Mining, crafting, inventory organization  
- **Building & Construction**: Automated structure creation
- **Combat Systems**: PvP and PvE bot behaviors
- **Server Integration**: Chat commands, multiplayer coordination

## Training Details

This model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Hugging Face's TRL library.

## References

- [MineDojo Dataset](https://minedojo.org/)
- [MineDojo Paper](https://arxiv.org/abs/2206.08853)
- [Mineflayer Documentation](https://github.com/PrismarineJS/mineflayer)

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)

# Uploaded  model

- **Developed by:** SanthoshToorpu
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit

This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)