october-finetuning-more-variables-sweep-20251012-195029-t04

Slur reclamation binary classifier
Task: LGBTQ+ reclamation vs non-reclamation use of harmful words on social media text.

Trial timestamp (UTC): 2025-10-12 19:50:29

Data case: en-es-it

Configuration (trial hyperparameters)

Model: Alibaba-NLP/gte-multilingual-base

Hyperparameter Value
LANGUAGES en-es-it
LR 2e-05
EPOCHS 3
MAX_LENGTH 256
USE_BIO False
USE_LANG_TOKEN False
GATED_BIO False
FOCAL_LOSS True
FOCAL_GAMMA 1.5
USE_SAMPLER True
R_DROP True
R_KL_ALPHA 1.0
TEXT_NORMALIZE True

Dev set results (summary)

Metric Value
f1_macro_dev_0.5 0.6803775920767564
f1_weighted_dev_0.5 0.8172770881197531
accuracy_dev_0.5 0.7951002227171492
f1_macro_dev_best_global 0.7157754456105281
f1_weighted_dev_best_global 0.8669297125750414
accuracy_dev_best_global 0.8730512249443207
f1_macro_dev_best_by_lang 0.7080276594770344
f1_weighted_dev_best_by_lang 0.849355474704107
accuracy_dev_best_by_lang 0.8418708240534521
default_threshold 0.5
best_threshold_global 0.7000000000000001
thresholds_by_lang {"en": 0.5, "it": 0.65, "es": 0.7000000000000001}

Thresholds

  • Default: 0.5
  • Best global: 0.7000000000000001
  • Best by language: { "en": 0.5, "it": 0.65, "es": 0.7000000000000001 }

Detailed evaluation

Classification report @ 0.5

              precision    recall  f1-score   support

 no-recl (0)     0.9399    0.8130    0.8719       385
    recl (1)     0.3793    0.6875    0.4889        64

    accuracy                         0.7951       449
   macro avg     0.6596    0.7502    0.6804       449
weighted avg     0.8600    0.7951    0.8173       449

Classification report @ best global threshold (t=0.70)

              precision    recall  f1-score   support

 no-recl (0)     0.9121    0.9429    0.9272       385
    recl (1)     0.5686    0.4531    0.5043        64

    accuracy                         0.8731       449
   macro avg     0.7403    0.6980    0.7158       449
weighted avg     0.8631    0.8731    0.8669       449

Classification report @ best per-language thresholds

              precision    recall  f1-score   support

 no-recl (0)     0.9266    0.8857    0.9057       385
    recl (1)     0.4568    0.5781    0.5103        64

    accuracy                         0.8419       449
   macro avg     0.6917    0.7319    0.7080       449
weighted avg     0.8597    0.8419    0.8494       449

Per-language metrics (at best-by-lang)

lang n acc f1_macro f1_weighted prec_macro rec_macro prec_weighted rec_weighted
en 154 0.7792 0.5313 0.8146 0.5330 0.5652 0.8613 0.7792
it 163 0.9018 0.8275 0.8977 0.8601 0.8036 0.8974 0.9018
es 132 0.8409 0.7282 0.8502 0.7074 0.7625 0.8649 0.8409

Data

  • Train/Dev: private multilingual splits with ~15% stratified Dev (by (lang,label)).
  • Source: merged EN/IT/ES data with bios retained (ignored if unused by model).

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
import torch, numpy as np

repo = "SimoneAstarita/october-finetuning-more-variables-sweep-20251012-195029-t04"
tok = AutoTokenizer.from_pretrained(repo)
cfg = AutoConfig.from_pretrained(repo)
model = AutoModelForSequenceClassification.from_pretrained(repo)

texts = ["example text ..."]
langs = ["en"]

mode = "best_global"  # or "0.5", "by_lang"

enc = tok(texts, truncation=True, padding=True, max_length=256, return_tensors="pt")
with torch.no_grad():
    logits = model(**enc).logits
probs = torch.softmax(logits, dim=-1)[:, 1].cpu().numpy()

if mode == "0.5":
    th = 0.5
    preds = (probs >= th).astype(int)
elif mode == "best_global":
    th = getattr(cfg, "best_threshold_global", 0.5)
    preds = (probs >= th).astype(int)
elif mode == "by_lang":
    th_by_lang = getattr(cfg, "thresholds_by_lang", {})
    preds = np.zeros_like(probs, dtype=int)
    for lg in np.unique(langs):
        t = th_by_lang.get(lg, getattr(cfg, "best_threshold_global", 0.5))
        preds[np.array(langs) == lg] = (probs[np.array(langs) == lg] >= t).astype(int)
print(list(zip(texts, preds, probs)))

Additional files

reports.json: all metrics (macro/weighted/accuracy) for @0.5, @best_global, and @best_by_lang. config.json: stores thresholds: default_threshold, best_threshold_global, thresholds_by_lang. postprocessing.json: duplicate threshold info for external tools.

Downloads last month
1
Safetensors
Model size
0.6B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support