|
|
--- |
|
|
license: other |
|
|
base_model: microsoft/phi-2 |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
- medical |
|
|
- peft |
|
|
- 'lora ' |
|
|
model-index: |
|
|
- name: Thealth-phi-2-tunned-9_medalpaca_medical_meadow |
|
|
results: [] |
|
|
datasets: |
|
|
- medalpaca/medical_meadow_mediqa |
|
|
- medalpaca/medical_meadow_mmmlu |
|
|
- medalpaca/medical_meadow_medical_flashcards |
|
|
- medalpaca/medical_meadow_wikidoc_patient_information |
|
|
- medalpaca/medical_meadow_wikidoc |
|
|
- medalpaca/medical_meadow_pubmed_causal |
|
|
- medalpaca/medical_meadow_medqa |
|
|
- medalpaca/medical_meadow_health_advice |
|
|
- medalpaca/medical_meadow_cord19 |
|
|
pipeline_tag: conversational |
|
|
--- |
|
|
 |
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# Thealth-phi-2-tunned-9_medalpaca_medical_meadow |
|
|
|
|
|
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 6.6588 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
Training is done one 9 medalpaca/medical_meadow datasets combined and splited to 90% train and 10% Evaluation |
|
|
|
|
|
| Dataset | |
|
|
|:-----------------------------------------------------:| |
|
|
| medalpaca/medical_meadow_mediqa | |
|
|
| medalpaca/medical_meadow_mmmlu | |
|
|
| medalpaca/medical_meadow_medical_flashcards | |
|
|
| medalpaca/medical_meadow_wikidoc_patient_information | |
|
|
| medalpaca/medical_meadow_wikidoc | |
|
|
| medalpaca/medical_meadow_pubmed_causal | |
|
|
| medalpaca/medical_meadow_medqa | |
|
|
| medalpaca/medical_meadow_health_advice | |
|
|
| medalpaca/medical_meadow_cord19 | |
|
|
|
|
|
## Training procedure |
|
|
Used different tokenizer [stanford-crfm/BioMedLM](https://huggingface.co/stanford-crfm/BioMedLM) |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 0.0002 |
|
|
- train_batch_size: 2 |
|
|
- eval_batch_size: 2 |
|
|
- seed: 42 |
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
|
- lr_scheduler_type: cosine |
|
|
- training_steps: 1000 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|
|:-------------:|:-----:|:----:|:---------------:| |
|
|
| 6.8245 | 0.0 | 500 | 6.7654 | |
|
|
| 6.7944 | 0.0 | 1000 | 6.6588 | |
|
|
|
|
|
|
|
|
### Usage |
|
|
```python |
|
|
import torch |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("stanford-crfm/BioMedLM", trust_remote_code=True) |
|
|
model = AutoModelForCausalLM.from_pretrained("TachyHealthResearch/Thealth-phi-2-tunned-9_medalpaca_medical_meadow", trust_remote_code=True, torch_dtype=torch.float32) |
|
|
``` |
|
|
|
|
|
```python |
|
|
inputs = tokenizer( |
|
|
""" |
|
|
question: ****** ? answer: |
|
|
""", |
|
|
return_tensors="pt", |
|
|
return_attention_mask=False) |
|
|
``` |
|
|
|
|
|
```python |
|
|
outputs = model.generate(**inputs, max_length=512) |
|
|
text = tokenizer.batch_decode(outputs)[0] |
|
|
print(text) |
|
|
``` |
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.35.2 |
|
|
- Pytorch 2.1.0+cu121 |
|
|
- Datasets 2.15.0 |
|
|
- Tokenizers 0.15.0 |