flux_qint_8bit
Pre-quantized FLUX models using optimum-quanto for memory-efficient inference on consumer hardware.
Summary
| Metric | Value |
|---|---|
| Total Models | 8 |
| Total Size | 146.3 GB |
| Quantization | qint8 (8-bit integer) |
| Platforms | MPS, CUDA, CPU |
Available Quantizations
| Model | Transformer | Text Encoder | Path |
|---|---|---|---|
| FLUX.1 Canny [dev] | β 11.09 GB | β 4.56 GB | flux-1-canny-dev/ |
| FLUX.1 Depth [dev] | β 11.09 GB | β 4.56 GB | flux-1-depth-dev/ |
| FLUX.1 Fill [dev] | β 11.09 GB | β 4.56 GB | flux-1-fill-dev/ |
| FLUX.1 Kontext [dev] | β 11.09 GB | β 4.56 GB | flux-1-kontext-dev/ |
| FLUX.1 [dev] | β 11.09 GB | β 4.56 GB | flux-1-dev/ |
| FLUX.1 [schnell] | β 11.08 GB | β 4.56 GB | flux-1-schnell/ |
| FLUX.2 [dev] | β 30.02 GB | β 22.37 GB | flux-2-dev/ |
Model Details
FLUX.1 Canny [dev]
Source: black-forest-labs/FLUX.1-Canny-dev
Pipeline: FluxControlPipeline
Use case: 12B canny edge-guided generation model
| Component | Params | Size | Path |
|---|---|---|---|
| Transformer | 12.0B | 11.09 GB | flux-1-canny-dev/transformer/qint8 |
| Text Encoder (T5-XXL) | 4.7B | 4.56 GB | flux-1-canny-dev/text_encoder/qint8 |
FLUX.1 Depth [dev]
Source: black-forest-labs/FLUX.1-Depth-dev
Pipeline: FluxControlPipeline
Use case: 12B depth-guided generation model
| Component | Params | Size | Path |
|---|---|---|---|
| Transformer | 12.0B | 11.09 GB | flux-1-depth-dev/transformer/qint8 |
| Text Encoder (T5-XXL) | 4.7B | 4.56 GB | flux-1-depth-dev/text_encoder/qint8 |
FLUX.1 Fill [dev]
Source: black-forest-labs/FLUX.1-Fill-dev
Pipeline: FluxFillPipeline
Use case: 12B inpainting/outpainting model
| Component | Params | Size | Path |
|---|---|---|---|
| Transformer | 12.0B | 11.09 GB | flux-1-fill-dev/transformer/qint8 |
| Text Encoder (T5-XXL) | 4.7B | 4.56 GB | flux-1-fill-dev/text_encoder/qint8 |
FLUX.1 Kontext [dev]
Source: black-forest-labs/FLUX.1-Kontext-dev
Pipeline: FluxKontextPipeline
Use case: 12B image editing model (in-context generation)
| Component | Params | Size | Path |
|---|---|---|---|
| Transformer | 12.0B | 11.09 GB | flux-1-kontext-dev/transformer/qint8 |
| Text Encoder (T5-XXL) | 4.7B | 4.56 GB | flux-1-kontext-dev/text_encoder/qint8 |
FLUX.1 [dev]
Source: black-forest-labs/FLUX.1-dev
Pipeline: FluxPipeline
Use case: 12B high-quality generation model (guidance distilled)
| Component | Params | Size | Path |
|---|---|---|---|
| Transformer | 12.0B | 11.09 GB | flux-1-dev/transformer/qint8 |
| Text Encoder (T5-XXL) | 4.7B | 4.56 GB | flux-1-dev/text_encoder/qint8 |
FLUX.1 [schnell]
Source: black-forest-labs/FLUX.1-schnell
Pipeline: FluxPipeline
Use case: 12B fast 4-step generation model (Apache 2.0 license)
| Component | Params | Size | Path |
|---|---|---|---|
| Transformer | 12.0B | 11.08 GB | flux-1-schnell/transformer/qint8 |
| Text Encoder (T5-XXL) | 4.7B | 4.56 GB | flux-1-schnell/text_encoder/qint8 |
FLUX.2 [dev]
Source: black-forest-labs/FLUX.2-dev
Pipeline: Flux2Pipeline
Use case: 32B unified multi-modal model (text-to-image, inpainting, depth, canny, etc.)
| Component | Params | Size | Path |
|---|---|---|---|
| Transformer | 32.0B | 30.02 GB | flux-2-dev/transformer/qint8 |
| Text Encoder (Mistral) | 24.0B | 22.37 GB | flux-2-dev/text_encoder/qint8 |
Usage Examples
FLUX.1 Models (text-to-image, inpainting, depth, canny, etc.)
from diffusers import FluxPipeline # or FluxFillPipeline, FluxControlPipeline, etc.
from diffusers.models import FluxTransformer2DModel
from transformers import T5EncoderModel
from optimum.quanto import QuantizedDiffusersModel, QuantizedTransformersModel
from huggingface_hub import snapshot_download
import torch
REPO_ID = "VincentGOURBIN/flux_qint_8bit"
quant_path = snapshot_download(REPO_ID)
# Quantized model classes for FLUX.1
class QuantizedFluxTransformer2DModel(QuantizedDiffusersModel):
base_class = FluxTransformer2DModel
class QuantizedT5EncoderModel(QuantizedTransformersModel):
auto_class = T5EncoderModel
# Example: Load FLUX.1-dev with quantized transformer
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
transformer=None,
torch_dtype=torch.bfloat16
)
transformer = QuantizedFluxTransformer2DModel.from_pretrained(
f"{quant_path}/flux-1-dev/transformer/qint8"
)
pipe.transformer = transformer.to("mps") # or "cuda"
# Optional: Load quantized T5 text encoder (saves ~9GB)
# text_encoder_2 = QuantizedT5EncoderModel.from_pretrained(
# f"{quant_path}/flux-1-dev/text_encoder/qint8"
# )
# pipe.text_encoder_2 = text_encoder_2.to("mps")
image = pipe("A majestic mountain at sunset", num_inference_steps=28).images[0]
image.save("output.png")
FLUX.2 Models (unified multi-modal)
from diffusers import Flux2Pipeline
from diffusers.models import Flux2Transformer2DModel
from transformers import AutoModel
from optimum.quanto import QuantizedDiffusersModel, QuantizedTransformersModel
from huggingface_hub import snapshot_download
import torch
REPO_ID = "VincentGOURBIN/flux_qint_8bit"
quant_path = snapshot_download(REPO_ID)
# Quantized model classes for FLUX.2
class QuantizedFlux2Transformer2DModel(QuantizedDiffusersModel):
base_class = Flux2Transformer2DModel
class QuantizedFlux2TextEncoder(QuantizedTransformersModel):
auto_class = AutoModel
# Load FLUX.2-dev with quantized transformer
pipe = Flux2Pipeline.from_pretrained(
"black-forest-labs/FLUX.2-dev",
transformer=None,
torch_dtype=torch.bfloat16
)
transformer = QuantizedFlux2Transformer2DModel.from_pretrained(
f"{quant_path}/flux-2-dev/transformer/qint8"
)
pipe.transformer = transformer.to("mps") # or "cuda"
# Optional: Load quantized Mistral text encoder (saves ~36GB)
# text_encoder = QuantizedFlux2TextEncoder.from_pretrained(
# f"{quant_path}/flux-2-dev/text_encoder/qint8"
# )
# pipe.text_encoder = text_encoder.to("mps")
image = pipe("A beautiful landscape", num_inference_steps=28, guidance_scale=4.0).images[0]
image.save("output.png")
Memory Requirements
| Model Family | Transformer qint8 | Text Encoder qint8 | Total | RAM to Quantize |
|---|---|---|---|---|
| FLUX.2 | ~30 GB | ~22 GB | ~52 GB | ~64 GB |
| FLUX.1 | ~11 GB | ~4.4 GB | ~15 GB | ~24 GB |
Compatibility
| Platform | Status | Notes |
|---|---|---|
| MPS (Apple Silicon) | β Fully supported | Best for M1/M2/M3 Macs |
| CUDA (NVIDIA) | β Fully supported | RTX 3090+ recommended |
| CPU | β οΈ Slow | Not recommended for production |
Installation
pip install diffusers transformers accelerate safetensors
pip install optimum[quanto]
pip install huggingface_hub
Important Notes
- VAE is NOT quantized - Quantizing VAE causes visual artifacts
- LoRA compatible - Quantized models work with LoRA adapters (unlike GGUF)
- Text encoders are optional - Transformer-only quantization saves significant memory while the text encoder runs in bfloat16
File Structure
flux_qint_8bit/
βββ flux-2-dev/ # FLUX.2 models (if present)
β βββ transformer/
β β βββ qint8/
β βββ text_encoder/
β βββ qint8/
βββ flux-1-dev/ # FLUX.1 models
β βββ transformer/
β β βββ qint8/
β βββ text_encoder/
β βββ qint8/
βββ flux-1-schnell/ # Fast model
β βββ ...
βββ README.md
Generated With
flux-quantizer - Gradio tool for batch quantizing and publishing FLUX models.
Last updated: 2025-12-23 18:18 UTC
- Downloads last month
- 6