| # WrinkleBrane Optimization Analysis | |
| ## π Key Findings from Benchmarks | |
| ### Fidelity Performance on Synthetic Patterns | |
| - **High fidelity**: 150+ dB PSNR with SSIM (1.0000) achieved on simple geometric test patterns | |
| - **Hadamard codes** show optimal orthogonality with zero cross-correlation error | |
| - **DCT codes** achieve near-optimal results with minimal orthogonality error (0.000001) | |
| - **Gaussian codes** demonstrate expected degradation (11.1Β±2.8dB PSNR) due to poor orthogonality | |
| ### Capacity Behavior (Limited Testing) | |
| - **Theoretical capacity**: Up to L layers (as expected from theory) | |
| - **Within-capacity performance**: Good results maintained up to theoretical limit on test patterns | |
| - **Beyond-capacity degradation**: Expected performance drop when exceeding theoretical capacity | |
| - **Testing limitation**: Evaluation restricted to simple synthetic patterns | |
| ### Performance Scaling (Preliminary) | |
| - **Memory usage**: Linear scaling with BΓLΓHΓW tensor dimensions | |
| - **Write throughput**: 6,012 to 134,041 patterns/sec across tested scales | |
| - **Read throughput**: 8,786 to 341,295 readouts/sec | |
| - **Scale effects**: Throughput per pattern decreases with larger configurations | |
| ## π― Optimization Opportunities | |
| ### 1. Alpha Scaling Optimization | |
| **Issue**: Current implementation uses uniform alpha=1.0 for all patterns | |
| **Opportunity**: Adaptive alpha scaling based on pattern energy and orthogonality | |
| ```python | |
| def compute_adaptive_alphas(patterns, C, keys): | |
| """Compute optimal alpha values for each pattern.""" | |
| alphas = torch.ones(len(keys)) | |
| for i, key in enumerate(keys): | |
| # Scale by pattern energy | |
| pattern_energy = torch.norm(patterns[i]) | |
| alphas[i] = 1.0 / pattern_energy.clamp_min(0.1) | |
| # Consider orthogonality with existing codes | |
| code_similarity = torch.abs(C[:, key] @ C).max() | |
| alphas[i] *= (2.0 - code_similarity) | |
| return alphas | |
| ``` | |
| ### 2. Hierarchical Memory Organization | |
| **Issue**: All patterns stored at same level causing interference | |
| **Opportunity**: Multi-resolution storage with different layer allocations | |
| ```python | |
| class HierarchicalMembraneBank: | |
| def __init__(self, L, H, W, levels=3): | |
| self.levels = levels | |
| self.banks = [] | |
| for level in range(levels): | |
| bank_L = L // (2 ** level) | |
| self.banks.append(MembraneBank(bank_L, H, W)) | |
| ``` | |
| ### 3. Dynamic Code Generation | |
| **Issue**: Static Hadamard codes limit capacity to fixed dimensions | |
| **Opportunity**: Generate codes on-demand with optimal orthogonality | |
| ```python | |
| def generate_optimal_codes(L, K, existing_patterns=None): | |
| """Generate codes optimized for specific patterns.""" | |
| if K <= L: | |
| return hadamard_codes(L, K) # Use Hadamard when possible | |
| else: | |
| return gram_schmidt_codes(L, K, patterns=existing_patterns) | |
| ``` | |
| ### 4. Sparse Storage Optimization | |
| **Issue**: Dense tensor operations even for sparse patterns | |
| **Opportunity**: Leverage sparsity in both patterns and codes | |
| ```python | |
| def sparse_store_pairs(M, C, keys, values, alphas, sparsity_threshold=0.01): | |
| """Sparse implementation of store_pairs for sparse patterns.""" | |
| # Identify sparse patterns | |
| sparse_mask = torch.norm(values.view(len(values), -1), dim=1) < sparsity_threshold | |
| # Use dense storage for dense patterns, sparse for sparse ones | |
| if sparse_mask.any(): | |
| return sparse_storage_kernel(M, C, keys[sparse_mask], values[sparse_mask]) | |
| else: | |
| return store_pairs(M, C, keys, values, alphas) | |
| ``` | |
| ### 5. Batch Processing Optimization | |
| **Issue**: Current implementation processes single batches | |
| **Opportunity**: Vectorize across multiple membrane banks | |
| ```python | |
| class BatchedMembraneBank: | |
| def __init__(self, L, H, W, num_banks=8): | |
| self.banks = [MembraneBank(L, H, W) for _ in range(num_banks)] | |
| def parallel_store(self, patterns_list, keys_list): | |
| """Store different pattern sets in parallel banks.""" | |
| # Vectorized implementation across banks | |
| pass | |
| ``` | |
| ### 6. GPU Acceleration Opportunities | |
| **Issue**: No GPU acceleration benchmarked (CUDA not available in test environment) | |
| **Opportunity**: Optimize tensor operations for GPU | |
| ```python | |
| def gpu_optimized_einsum(M, C): | |
| """GPU-optimized einsum with memory coalescing.""" | |
| if M.is_cuda: | |
| # Use custom CUDA kernels for better memory access patterns | |
| return torch.cuda.compiled_einsum('blhw,lk->bkhw', M, C) | |
| else: | |
| return torch.einsum('blhw,lk->bkhw', M, C) | |
| ``` | |
| ### 7. Persistence Layer Enhancements | |
| **Issue**: Basic exponential decay persistence | |
| **Opportunity**: Adaptive persistence based on pattern importance | |
| ```python | |
| class AdaptivePersistence: | |
| def __init__(self, base_lambda=0.95): | |
| self.base_lambda = base_lambda | |
| self.access_counts = {} | |
| def compute_decay(self, pattern_keys): | |
| """Compute decay rates based on access patterns.""" | |
| lambdas = [] | |
| for key in pattern_keys: | |
| count = self.access_counts.get(key, 0) | |
| # More accessed patterns decay slower | |
| lambda_val = self.base_lambda + (1 - self.base_lambda) * count / 100 | |
| lambdas.append(min(lambda_val, 0.99)) | |
| return torch.tensor(lambdas) | |
| ``` | |
| ## π Implementation Priority | |
| ### High Priority (Immediate Impact) | |
| 1. **Alpha Scaling Optimization** - Simple to implement, significant fidelity improvement | |
| 2. **Dynamic Code Generation** - Removes hard capacity limits | |
| 3. **GPU Acceleration** - Major performance boost for large scales | |
| ### Medium Priority (Architectural) | |
| 4. **Hierarchical Memory** - Better scaling characteristics | |
| 5. **Sparse Storage** - Memory efficiency for sparse data | |
| 6. **Adaptive Persistence** - Better long-term memory behavior | |
| ### Low Priority (Advanced) | |
| 7. **Batch Processing** - Complex but potentially high-throughput | |
| ## π Expected Performance Gains | |
| ### Alpha Scaling: 5-15dB PSNR improvement | |
| ### Dynamic Codes: 2-5x capacity increase | |
| ### GPU Acceleration: 10-50x throughput improvement | |
| ### Hierarchical Storage: 30-50% memory reduction | |
| ### Sparse Optimization: 60-80% memory savings for sparse data | |
| ## π§ͺ Testing Strategy | |
| Each optimization should be tested with: | |
| 1. **Fidelity preservation**: PSNR β₯ 100dB for standard test cases | |
| 2. **Capacity scaling**: Linear degradation up to theoretical limits | |
| 3. **Performance benchmarks**: Throughput improvements measured | |
| 4. **Interference analysis**: Cross-talk remains minimal | |
| 5. **Edge case handling**: Robust behavior for corner cases | |
| ## π Implementation Checklist | |
| - [ ] Implement adaptive alpha scaling | |
| - [ ] Add dynamic code generation | |
| - [ ] Create hierarchical memory banks | |
| - [ ] Develop sparse storage kernels | |
| - [ ] Add GPU acceleration paths | |
| - [ ] Implement adaptive persistence | |
| - [ ] Add comprehensive benchmarks | |
| - [ ] Create performance regression tests |