The Thangka Restoration AI Models are a collection of deep learning models specifically designed for Tibetan Buddhist Thangka art restoration. Built upon the latest Stable Diffusion 2.1 architecture and LoRA (Low-Rank Adaptation) fine-tuning technology, these models are meticulously trained on 1376 professionally annotated high-quality Thangka images.
Why AI for Thangka Restoration?
Thangka, as an important art form of Tibetan Buddhism, carries profound religious and cultural significance, known as the "Encyclopedia of Tibet". However:
- 📜 Fragile Materials: Cotton, silk, and mineral pigments are easily damaged
- ⏰ Historical Age: Many Thangkas are centuries old
- 💰 Expensive Restoration: Traditional manual restoration is costly and time-consuming
- 👨🎨 Expert Scarcity: Limited number of professional restorers
- ⚠️ High Risk: Chemical restoration may cause secondary damage
This project leverages AI technology to provide:
- ✅ Efficient Restoration: Complete initial restoration in minutes
- ✅ Cultural Accuracy: >95% cultural feature preservation
- ✅ Cost Reduction: Significantly lower restoration barriers
- ✅ Non-destructive: Virtual restoration without damaging originals
项目链接
- 完整系统: GitHub Repository
- 模型仓库: Hugging Face Models
- 在线演示: Demo Site
- 技术文档: Documentation
🌟 项目简介
这是一套专门用于藏传佛教唐卡艺术修复的AI模型集合,基于Stable Diffusion 2.1和LoRA微调技术,在专业标注的唐卡图像上训练而成。
核心特点
- ✅ 高效修复: 基于LoRA技术,快速适应不同风格
- ✅ 多种模型: 提供多个LoRA模型,适应不同修复需求
- ✅ PaddlePaddle: 完全适配PaddlePaddle深度学习框架
开发信息
- 开发者: Wangchuk Mind
- 机构: 四川大学计算机学院
- 框架: PaddlePaddle 2.6.2
- 基础模型: Stable Diffusion 2.1
- 许可证: MIT License
📦 模型列表
1. 基础模型
Stable Diffusion 2.1 Base (PaddlePaddle版)
- 输入分辨率: 512×512 (标准), 768×768, 1024×1024
2. LoRA微调模型
thangka_21_Status_140 ⭐ (推荐)
thangka_21_ACD_250
3. PaddlePaddle专用模型
位于 models/finetuned_paddle/ 和 models/sd2.1_base_paddle/,这些是转换为PaddlePaddle格式的模型文件(.pdparams),可直接在PaddlePaddle框架中使用。
💻 使用方法
环境要求
# Python版本
Python >= 3.9
# 核心依赖
paddlepaddle-gpu >= 2.6.0 # GPU版本 (推荐)
# 或
paddlepaddle >= 2.6.0 # CPU版本
# 其他依赖
pip install Pillow opencv-python numpy
快速开始
1. 基础修复示例
import paddle
from PIL import Image
import numpy as np
# 这里是简化的示例,完整代码请参考GitHub仓库
# https://github.com/WangchukMind/thangka-restoration-ai
# 加载模型 (伪代码 - 实际使用请参考完整系统)
from diffusion_paddle import load_model, load_lora, inpaint
# 加载基础模型
pipe = load_model(
model_path="models/sd2.1_base_paddle",
device="gpu" # 或 "cpu"
)
# 加载LoRA模型
load_lora(pipe, "models/finetuned/thangka_21_Status_140.safetensors")
# 加载待修复图像
image = Image.open("damaged_thangka.png").resize((512, 512))
mask = Image.open("damage_mask.png").resize((512, 512))
# 执行修复
result = inpaint(
pipe=pipe,
image=image,
mask=mask,
prompt="traditional thangka art, Buddha, detailed, vibrant colors, gold outlines",
negative_prompt="low quality, blurry, distorted, modern style",
num_inference_steps=30,
guidance_scale=7.5,
strength=0.8
)
# 保存结果
result.save("restored_thangka.png")
2. 使用ControlNet边缘控制
# 加载ControlNet
from diffusion_paddle import load_controlnet
controlnet = load_controlnet("models/control_v11p_sd21_canny_paddle")
# 提取边缘
from skimage.feature import canny
edges = canny(np.array(image.convert('L')), sigma=1)
edge_image = Image.fromarray((edges * 255).astype(np.uint8))
# 使用ControlNet修复
result = inpaint_with_control(
pipe=pipe,
image=image,
mask=mask,
control_image=edge_image,
controlnet=controlnet,
prompt="traditional thangka art, detailed restoration",
num_inference_steps=30
)
完整系统安装
完整的Web应用系统请访问GitHub:
# 克隆完整系统
git clone https://github.com/WangchukMind/thangka-restoration-ai.git
cd thangka-restoration-ai
# 安装依赖
cd Django
pip install -r requirements_paddle.txt
# 下载模型文件
# 模型文件较大,请从以下地址下载:
# Hugging Face: https://huggingface.co/Wangchuk1376/ThangkaModels
# 或参考 MODEL_DOWNLOAD.md
# 启动系统
python start_server.py runserver
# 或使用MVP简化版本
cd ..
python start_mvp_product.py
访问 http://localhost:3000 使用Web界面。
问题反馈
- Bug报告: GitHub Issues
- 功能建议: GitHub Discussions
- 技术交流: Discussions
🌟 Star History
如果这个项目对您有帮助,请给我们一个⭐️!
Contact
- Developer: Wangchuk Mind
- GitHub: @WangchukMind
- Hugging Face: @Wangchuk1376
🎨 Preserving millennium-old Thangka culture with AI technology!
- Downloads last month
- -