WilliamSotoM's picture
Update README.md
beec28e verified
metadata
language:
  - ht
license: mit
library_name: peft
tags:
  - peft
  - text2text-generation
  - text-generation
base_model: google/mt5-large

PTHQL_language_Haitian_Creole

This is the Haitian Creole (hat_Latn) Phylogenetic Tree Hierarquical QLoRAs (PTHQL) adapter from Generating from AMRs into High and Low-Resource Languages using Phylogenetic Knowledge and Hierarchical QLoRA Training (HQL) used for AMR-to-Text generation.

Use

This model is the last of 4 hierarquical LoRAs. It is strongly adviseable to load all 4 LoRAs in order.

The following is minimal code to generate Haitian Creole text from an AMR graph:

from transformers import MT5ForConditionalGeneration, AutoTokenizer
from peft import PeftModel

model = MT5ForConditionalGeneration.from_pretrained('google/mt5-large')
tokennizer = AutoTokenizer.from_pretrained('google/mt5-large')

model = PeftModel.from_pretrained(model, 'WilliamSotoM/PTHQL_level0_Indo_European')
model = model.merge_and_unload()

model = PeftModel.from_pretrained(model, 'WilliamSotoM/PTHQL_level1_Romance')
model = model.merge_and_unload()

model = PeftModel.from_pretrained(model, 'WilliamSotoM/PTHQL_level2_Gallo_Romance')
model = model.merge_and_unload()

model = PeftModel.from_pretrained(model, 'WilliamSotoM/PTHQL_language_Haitian_Creole')
model = model.merge_and_unload()

graph = '''
(c / contrast-01
    :ARG2 (t / thing
    :quant (l2 / lot)
    :ARG0-of (l / look-02
        :ARG1 (d / dinosaur)
        :mod (s / still))
    :topic (b / bird)))
'''
tokenized_input = tokenizer(graph, return_tensors='pt')

with torch.inference_mode():
    prediction = model.generate(**tokenized_input)
    generated_text = tokenizer.batch_decode(prediction, skip_special_tokens=True)[0]

print(f'Generated text:', generated_text)

Expected outpu:

Men, en ce qui concerne les oiseaux, il y a beaucoup de coses qui toujou semblen desinòxes.