File size: 3,116 Bytes
e8df522
24e6af8
e8df522
 
24e6af8
e8df522
 
24e6af8
 
 
 
 
 
 
 
 
 
 
e8df522
 
24e6af8
e8df522
24e6af8
e8df522
24e6af8
e8df522
24e6af8
 
e8df522
24e6af8
e8df522
24e6af8
 
 
 
 
e8df522
24e6af8
e8df522
24e6af8
 
 
 
 
e8df522
24e6af8
 
 
e8df522
24e6af8
 
 
e8df522
24e6af8
 
 
e8df522
 
24e6af8
e8df522
24e6af8
 
 
 
e8df522
24e6af8
e8df522
24e6af8
 
 
 
e8df522
24e6af8
92b7d0b
24e6af8
 
 
 
 
 
e8df522
 
 
24e6af8
92b7d0b
24e6af8
 
 
92b7d0b
24e6af8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: mit
language:
- en
library_name: transformers
tags:
- video-generation
- robotics
- embodied-ai
- physical-reasoning
- causal-reasoning
- inverse-dynamics
- wow
- arxiv:2509.22642
datasets:
- WoW-world-model/WoW-1-Benchmark-Samples
pipeline_tag: video-generation
base_model: wan
---

# πŸ€– WoW-1-Wan-14B-2M

**WoW-1-Wan-14B** is a 14-billion-parameter generative world model trained on **2 million real-world robot interaction trajectories**. It is designed to imagine, reason, and act in physically consistent environments, powered by SOPHIA-guided refinement and a co-trained **Inverse Dynamics Model**.

This model is part of the [WoW (World-Omniscient World Model)](https://github.com/wow-world-model/wow-world-model) project, introduced in the paper:

> **[WoW: Towards a World omniscient World model Through Embodied Interaction](https://arxiv.org/abs/2509.22642)**  
> *Chi et al., 2025 – arXiv:2509.22642*

## 🧠 Key Features

- **14B parameters** trained on **2M robot interaction samples**
- Learns **causal physical reasoning** from embodied action
- Generates physically consistent video and robotic action plans
- Uses **SOPHIA**, a vision-language critic, to refine outputs
- Paired with an **Inverse Dynamics Model** to complete imagination-to-action loop

## πŸ§ͺ Training Data

<!-- - Dataset: [WoW-1-Benchmark-Samples](https://huggingface.co/datasets/WoW-world-model/WoW-1-Benchmark-Samples) -->
- **2M** Real-world robot interaction trajectories
- Multimodal scenes including vision, action, and language
- Diverse **mixture captions** for better generalization
### 🧠 Mixture Caption Strategy

- **Prompt Lengths**:
  - Short: *"The Franka robot, grasp the red bottle on the table"*
  - Long: *"The scene... open the drawer, take the screwdriver, place it on the table..."*

- **Robot Model Mixing**:
  - Captions reference various robot types
  - Example: *"grasp with the Franka Panda arm"*, *"use end-effector to align"*

- **Action Granularity**:
  - Coarse: *"move to object"*
  - Fine: *"rotate wrist 30Β° before grasping"*


## πŸ”„ Continuous Updates

This dataset will be **continuously updated** with:
- More trajectories
- Richer language
- Finer multimodal annotations

## 🧩 Applications

- Zero-shot video generation in robotics
- Causal reasoning and physics simulation
- Long-horizon manipulation planning
- Forward and inverse control prediction

## πŸ“„ Citation

```bibtex
@article{chi2025wow,
  title={WoW: Towards a World omniscient World model Through Embodied Interaction},
  author={Chi, Xiaowei and Jia, Peidong and Fan, Chun-Kai and Ju, Xiaozhu and Mi, Weishi and Qin, Zhiyuan and Zhang, Kevin and Tian, Wanxin and Ge, Kuangzhi and Li, Hao and others},
  journal={arXiv preprint arXiv:2509.22642},
  year={2025}
}
```

## πŸ”— Resources

- 🧠 Project page: [wow-world-model.github.io](https://wow-world-model.github.io/)
- πŸ’» GitHub repo: [wow-world-model/wow-world-model](https://github.com/wow-world-model/wow-world-model)
- πŸ“Š Dataset: [WoW-1 Benchmark Samples](https://huggingface.co/datasets/WoW-world-model/WoW-1-Benchmark-Samples)

---