test
This is a sentence-transformers model finetuned from sentence-transformers/all-distilroberta-v1 on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-distilroberta-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Xavarary/mpnet-base-all-medium-triplet")
sentences = [
'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
'A worker is looking out of a manhole.',
'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Triplet
| Metric |
Value |
| cosine_accuracy |
0.0779 |
| dot_accuracy |
0.9221 |
| manhattan_accuracy |
0.0783 |
| euclidean_accuracy |
0.0779 |
| max_accuracy |
0.0783 |
Triplet
| Metric |
Value |
| cosine_accuracy |
0.0921 |
| dot_accuracy |
0.9079 |
| manhattan_accuracy |
0.097 |
| euclidean_accuracy |
0.0921 |
| max_accuracy |
0.097 |
Training Details
Training Dataset
all-nli
Evaluation Dataset
all-nli
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
learning_rate: 2e-05
num_train_epochs: 1
warmup_ratio: 0.1
fp16: True
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 1
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
all-nli-dev_max_accuracy |
| 0 |
0 |
- |
0.0783 |
| 0.016 |
100 |
0.9326 |
- |
| 0.032 |
200 |
0.7562 |
- |
| 0.048 |
300 |
1.0227 |
- |
| 0.064 |
400 |
0.6815 |
- |
| 0.08 |
500 |
0.7091 |
- |
| 0.096 |
600 |
0.8731 |
- |
| 0.112 |
700 |
0.8263 |
- |
| 0.128 |
800 |
0.9691 |
- |
| 0.144 |
900 |
0.9814 |
- |
| 0.16 |
1000 |
0.8569 |
- |
| 0.176 |
1100 |
0.9649 |
- |
| 0.192 |
1200 |
0.8079 |
- |
| 0.208 |
1300 |
0.6868 |
- |
| 0.224 |
1400 |
0.6749 |
- |
| 0.24 |
1500 |
0.6968 |
- |
| 0.256 |
1600 |
0.5537 |
- |
| 0.272 |
1700 |
0.7242 |
- |
| 0.288 |
1800 |
0.7363 |
- |
| 0.304 |
1900 |
0.5771 |
- |
| 0.32 |
2000 |
0.5519 |
- |
| 0.336 |
2100 |
0.4775 |
- |
| 0.352 |
2200 |
0.4376 |
- |
| 0.368 |
2300 |
0.6341 |
- |
| 0.384 |
2400 |
0.5207 |
- |
| 0.4 |
2500 |
0.5106 |
- |
| 0.416 |
2600 |
0.4666 |
- |
| 0.432 |
2700 |
0.8047 |
- |
| 0.448 |
2800 |
0.6638 |
- |
| 0.464 |
2900 |
0.6554 |
- |
| 0.48 |
3000 |
0.6055 |
- |
| 0.496 |
3100 |
0.5947 |
- |
| 0.512 |
3200 |
0.4352 |
- |
| 0.528 |
3300 |
0.4421 |
- |
| 0.544 |
3400 |
0.4187 |
- |
| 0.56 |
3500 |
0.4056 |
- |
| 0.576 |
3600 |
0.4046 |
- |
| 0.592 |
3700 |
0.3629 |
- |
| 0.608 |
3800 |
0.3428 |
- |
| 0.624 |
3900 |
0.362 |
- |
| 0.64 |
4000 |
0.5858 |
- |
| 0.656 |
4100 |
0.7457 |
- |
| 0.672 |
4200 |
0.7033 |
- |
| 0.688 |
4300 |
0.5343 |
- |
| 0.704 |
4400 |
0.4125 |
- |
| 0.72 |
4500 |
0.4567 |
- |
| 0.736 |
4600 |
0.4921 |
- |
| 0.752 |
4700 |
0.5264 |
- |
| 0.768 |
4800 |
0.4883 |
- |
| 0.784 |
4900 |
0.4231 |
- |
| 0.8 |
5000 |
0.5048 |
- |
| 0.816 |
5100 |
0.4044 |
- |
| 0.832 |
5200 |
0.5102 |
- |
| 0.848 |
5300 |
0.3751 |
- |
| 0.864 |
5400 |
0.5139 |
- |
| 0.88 |
5500 |
0.4439 |
- |
| 0.896 |
5600 |
0.3999 |
- |
| 0.912 |
5700 |
0.4932 |
- |
| 0.928 |
5800 |
0.4349 |
- |
| 0.944 |
5900 |
0.6022 |
- |
| 0.96 |
6000 |
0.5906 |
- |
| 0.976 |
6100 |
0.5021 |
- |
| 0.992 |
6200 |
0.0002 |
- |
| 1.0 |
6250 |
- |
0.0970 |
Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.1.1
- Transformers: 4.38.0
- PyTorch: 2.2.2+cu121
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}