TXModel - Hub-Ready Version
Zero-hassle deployment! Requires ONLY:
pip install transformers torch safetensors
π Quick Start
from transformers import AutoModel
import torch
# Load from Hub (one command!)
model = AutoModel.from_pretrained(
"your-username/model-name",
trust_remote_code=True
)
# Use immediately
genes = torch.randint(0, 100, (2, 10))
values = torch.rand(2, 10)
masks = torch.ones(2, 10).bool()
model.eval()
with torch.no_grad():
output = model(genes=genes, values=values, gen_masks=masks)
print(output.last_hidden_state.shape) # [2, 10, d_model]
β¨ Features
- β
Single file - all code in
modeling.py - β Zero dependencies (except transformers + torch)
- β Works with AutoModel out of the box
- β No import errors - everything self-contained
π¦ Installation
pip install transformers torch safetensors
That's it!
π― Usage
Basic Inference
from transformers import AutoModel
model = AutoModel.from_pretrained(
"your-username/model-name",
trust_remote_code=True
)
# Move to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
Batch Processing
# Your data
batch = {
'genes': torch.randint(0, 1000, (32, 100)),
'values': torch.rand(32, 100),
'masks': torch.ones(32, 100).bool()
}
# Process
model.eval()
with torch.no_grad():
output = model(**batch)
π Model Details
- Parameters: ~70M
- Architecture: Transformer Encoder
- Hidden Size: 512
- Layers: 12
- Heads: 8
π Citation
@article{tahoe2024,
title={Tahoe-x1},
author={...},
year={2024}
}
- Downloads last month
- 60