abdulrahman-nuzha's picture
End of training
0cb292f verified
|
raw
history blame
1.91 kB
metadata
library_name: transformers
license: mit
base_model: intfloat/e5-base-v2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: intfloat-e5-base-v2-english-fp16-allagree
    results: []

intfloat-e5-base-v2-english-fp16-allagree

This model is a fine-tuned version of intfloat/e5-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1038
  • Accuracy: 0.9780
  • Precision: 0.9779
  • Recall: 0.9780
  • F1: 0.9779

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.3
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.8016 3.3448 50 0.3066 0.9339 0.9343 0.9339 0.9325
0.1009 6.6897 100 0.1038 0.9780 0.9779 0.9780 0.9779

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0