|
|
--- |
|
|
license: apache-2.0 |
|
|
--- |
|
|
<div align="center"> |
|
|
<picture> |
|
|
<img src="assets/KANDINSKY_LOGO_1_BLACK.png"> |
|
|
</picture> |
|
|
</div> |
|
|
|
|
|
<div align="center"> |
|
|
<a href="https://habr.com/ru/companies/sberbank/articles/951800/">Habr</a> | <a href="https://ai-forever.github.io/Kandinsky-5/">Project Page</a> | Technical Report (soon) | <a href="https://github.com/ai-forever/Kandinsky-5">Original Github</a> | <a href="https://huggingface.co/collections/ai-forever/kandinsky-50-t2v-lite-diffusers-68dd73ebac816748ed79d6cb"> π€ Diffusers</a> |
|
|
</div> |
|
|
|
|
|
----- |
|
|
|
|
|
<h1>Kandinsky 5.0 T2V Lite - Diffusers</h1> |
|
|
|
|
|
This repository provides the π€ Diffusers integration for Kandinsky 5.0 T2V Lite - a lightweight video generation model (2B parameters) that ranks #1 among open-source models in its class. |
|
|
|
|
|
## Project Updates |
|
|
|
|
|
- π₯ **2025/09/29**: We have open-sourced `Kandinsky 5.0 T2V Lite` a lite (2B parameters) version of `Kandinsky 5.0 Video` text-to-video generation model. |
|
|
- π **Diffusers Integration**: Now available with easy-to-use π€ Diffusers pipeline! |
|
|
|
|
|
## Kandinsky 5.0 T2V Lite |
|
|
|
|
|
Kandinsky 5.0 T2V Lite is a lightweight video generation model (2B parameters) that ranks #1 among open-source models in its class. It outperforms larger Wan models (5B and 14B) and offers the best understanding of Russian concepts in the open-source ecosystem. |
|
|
|
|
|
We provide 8 model variants, each optimized for different use cases: |
|
|
|
|
|
* **SFT model** β delivers the highest generation quality |
|
|
* **CFG-distilled** β runs 2Γ faster |
|
|
* **Diffusion-distilled** β enables low-latency generation with minimal quality loss (6Γ faster) |
|
|
* **Pretrain model** β designed for fine-tuning by researchers and enthusiasts |
|
|
|
|
|
|
|
|
## Basic Usage |
|
|
```python |
|
|
import torch |
|
|
from diffusers import Kandinsky5T2VPipeline |
|
|
from diffusers.utils import export_to_video |
|
|
|
|
|
# Load the pipeline |
|
|
pipe = Kandinsky5T2VPipeline.from_pretrained( |
|
|
"ai-forever/Kandinsky-5.0-T2V-Lite-nocfg-10s-Diffusers", |
|
|
torch_dtype=torch.bfloat16 |
|
|
) |
|
|
pipe = pipe.to("cuda") |
|
|
|
|
|
pipe.transformer.set_attention_backend("flex") |
|
|
pipe.transformer.compile(mode="max-autotune-no-cudagraphs", dynamic=True) |
|
|
|
|
|
# Generate video |
|
|
prompt = "A cat and a dog baking a cake together in a kitchen." |
|
|
negative_prompt = "Static, 2D cartoon, cartoon, 2d animation, paintings, images, worst quality, low quality, ugly, deformed, walking backwards" |
|
|
|
|
|
output = pipe( |
|
|
prompt=prompt, |
|
|
negative_prompt=negative_prompt, |
|
|
height=512, |
|
|
width=768, |
|
|
num_frames=241, |
|
|
num_inference_steps=50, |
|
|
guidance_scale=1.0, |
|
|
).frames[0] |
|
|
|
|
|
## Save the video |
|
|
export_to_video(output, "output.mp4", fps=24, quality=9) |
|
|
``` |
|
|
|
|
|
## Using Different Model Variants |
|
|
```python |
|
|
import torch |
|
|
from diffusers import Kandinsky5T2VPipeline |
|
|
|
|
|
# 5s SFT model (highest quality) |
|
|
pipe_sft = Kandinsky5T2VPipeline.from_pretrained( |
|
|
"ai-forever/Kandinsky-5.0-T2V-Lite-sft-5s-Diffusers", |
|
|
torch_dtype=torch.bfloat16 |
|
|
) |
|
|
|
|
|
# 5s Distilled 16-step model (fastest) |
|
|
pipe_distill = Kandinsky5T2VPipeline.from_pretrained( |
|
|
"ai-forever/Kandinsky-5.0-T2V-Lite-distilled16steps-5s-Diffusers", |
|
|
torch_dtype=torch.bfloat16 |
|
|
) |
|
|
|
|
|
# 5s No-CFG model (balanced speed/quality) |
|
|
pipe_nocfg = Kandinsky5T2VPipeline.from_pretrained( |
|
|
"ai-forever/Kandinsky-5.0-T2V-Lite-nocfg-5s-Diffusers", |
|
|
torch_dtype=torch.bfloat16 |
|
|
) |
|
|
|
|
|
# 5s Pretrain model (most diverse) |
|
|
pipe_pretrain = Kandinsky5T2VPipeline.from_pretrained( |
|
|
"ai-forever/Kandinsky-5.0-T2V-Lite-pretrain-5s-Diffusers", |
|
|
torch_dtype=torch.bfloat16 |
|
|
) |
|
|
|
|
|
# 10s SFT model (highest quality) |
|
|
pipe_sft = Kandinsky5T2VPipeline.from_pretrained( |
|
|
"ai-forever/Kandinsky-5.0-T2V-Lite-sft-10s-Diffusers", |
|
|
torch_dtype=torch.bfloat16 |
|
|
) |
|
|
|
|
|
# 10s Distilled 16-step model (fastest) |
|
|
pipe_distill = Kandinsky5T2VPipeline.from_pretrained( |
|
|
"ai-forever/Kandinsky-5.0-T2V-Lite-distilled16steps-10s-Diffusers", |
|
|
torch_dtype=torch.bfloat16 |
|
|
) |
|
|
|
|
|
# 10s No-CFG model (balanced speed/quality) |
|
|
pipe_nocfg = Kandinsky5T2VPipeline.from_pretrained( |
|
|
"ai-forever/Kandinsky-5.0-T2V-Lite-nocfg-10s-Diffusers", |
|
|
torch_dtype=torch.bfloat16 |
|
|
) |
|
|
|
|
|
# 10s Pretrain model (most diverse) |
|
|
pipe_pretrain = Kandinsky5T2VPipeline.from_pretrained( |
|
|
"ai-forever/Kandinsky-5.0-T2V-Lite-pretrain-10s-Diffusers", |
|
|
torch_dtype=torch.bfloat16 |
|
|
) |
|
|
``` |
|
|
|
|
|
## Architecture |
|
|
Latent diffusion pipeline with Flow Matching. |
|
|
|
|
|
Diffusion Transformer (DiT) as the main generative backbone with cross-attention to text embeddings. |
|
|
|
|
|
Qwen2.5-VL and CLIP provides text embeddings |
|
|
|
|
|
HunyuanVideo 3D VAE encodes/decodes video into a latent space |
|
|
|
|
|
DiT is the main generative module using cross-attention to condition on text |
|
|
|
|
|
<div align="center"> |
|
|
<img width="1600" height="477" alt="Pipeline Architecture" src="https://github.com/user-attachments/assets/17fc2eb5-05e3-4591-9ec6-0f6e1ca397b3" /> |
|
|
</div> |
|
|
|
|
|
<div align="center"> |
|
|
<img width="800" height="406" alt="Model Architecture" src="https://github.com/user-attachments/assets/f3006742-e261-4c39-b7dc-e39330be9a09" /> |
|
|
</div> |
|
|
|
|
|
## Examples |
|
|
|
|
|
Kandinsky 5.0 T2V Lite SFT |
|
|
<table border="0" style="width: 200; text-align: left; margin-top: 20px;"> <tr> <td> <video src="https://github.com/user-attachments/assets/bc38821b-f9f1-46db-885f-1f70464669eb" width=200 controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/9f64c940-4df8-4c51-bd81-a05de8e70fc3" width=200 controls autoplay loop></video> </td> <tr> <td> <video src="https://github.com/user-attachments/assets/77dd417f-e0bf-42bd-8d80-daffcd054add" width=200 controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/385a0076-f01c-4663-aa46-6ce50352b9ed" width=200 controls autoplay loop></video> </td> <tr> <td> <video src="https://github.com/user-attachments/assets/7c1bcb31-cc7d-4385-9a33-2b0cc28393dd" width=200 controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/990a8a0b-2df1-4bbc-b2e3-2859b6f1eea6" width=200 controls autoplay loop></video> </td> </tr> </table> |
|
|
Kandinsky 5.0 T2V Lite Distill |
|
|
<table border="0" style="width: 200; text-align: left; margin-top: 20px;"> <tr> <td> <video src="https://github.com/user-attachments/assets/861342f9-f576-4083-8a3b-94570a970d58" width=200 controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/302e4e7d-781d-4a58-9b10-8c473d469c4b" width=200 controls autoplay loop></video> </td> <tr> <td> <video src="https://github.com/user-attachments/assets/3e70175c-40e5-4aec-b506-38006fe91a76" width=200 controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/b7da85f7-8b62-4d46-9460-7f0e505de810" width=200 controls autoplay loop></video> </td> </table> |
|
|
Results |
|
|
Side-by-Side Evaluation |
|
|
The evaluation is based on the expanded prompts from the Movie Gen benchmark. |
|
|
|
|
|
<table border="0" style="width: 400; text-align: left; margin-top: 20px;"> <tr> <td> <img src="assets/sbs/kandinsky_5_video_lite_vs_sora.jpg" width=400 ></img> </td> <td> <img src="assets/sbs/kandinsky_5_video_lite_vs_wan_2.1_14B.jpg" width=400 ></img> </td> <tr> <td> <img src="assets/sbs/kandinsky_5_video_lite_vs_wan_2.2_5B.jpg" width=400 ></img> </td> <td> <img src="assets/sbs/kandinsky_5_video_lite_vs_wan_2.2_A14B.jpg" width=400 ></img> </td> <tr> <td> <img src="assets/sbs/kandinsky_5_video_lite_vs_wan_2.1_1.3B.jpg" width=400 ></img> </td> </table> |
|
|
Distill Side-by-Side Evaluation |
|
|
<table border="0" style="width: 400; text-align: left; margin-top: 20px;"> <tr> <td> <img src="assets/sbs/kandinsky_5_video_lite_5s_vs_kandinsky_5_video_lite_distill_5s.jpg" width=400 ></img> </td> <td> <img src="assets/sbs/kandinsky_5_video_lite_10s_vs_kandinsky_5_video_lite_distill_10s.jpg" width=400 ></img> </td> </table> |
|
|
VBench Results |
|
|
<div align="center"> <picture> <img src="assets/vbench.png"> </picture> </div> |
|
|
Beta Testing |
|
|
You can apply to participate in the beta testing of the Kandinsky Video Lite via the telegram bot. |
|
|
|
|
|
```bibtex |
|
|
@misc{kandinsky2025, |
|
|
author = {Alexey Letunovskiy, Maria Kovaleva, Ivan Kirillov, Lev Novitskiy, Denis Koposov, |
|
|
Dmitrii Mikhailov, Anna Averchenkova, Andrey Shutkin, Julia Agafonova, Olga Kim, |
|
|
Anastasiia Kargapoltseva, Nikita Kiselev, Vladimir Arkhipkin, Vladimir Korviakov, |
|
|
Nikolai Gerasimenko, Denis Parkhomenko, Anna Dmitrienko, Anastasia Maltseva, |
|
|
Kirill Chernyshev, Ilia Vasiliev, Viacheslav Vasilev, Vladimir Polovnikov, |
|
|
Yury Kolabushin, Alexander Belykh, Mikhail Mamaev, Anastasia Aliaskina, |
|
|
Tatiana Nikulina, Polina Gavrilova, Denis Dimitrov}, |
|
|
title = {Kandinsky 5.0: A family of diffusion models for Video & Image generation}, |
|
|
howpublished = {\url{https://github.com/ai-forever/Kandinsky-5}}, |
|
|
year = 2025 |
|
|
} |
|
|
|
|
|
@misc{mikhailov2025nablanablaneighborhoodadaptiveblocklevel, |
|
|
title={$\nabla$NABLA: Neighborhood Adaptive Block-Level Attention}, |
|
|
author={Dmitrii Mikhailov and Aleksey Letunovskiy and Maria Kovaleva and Vladimir Arkhipkin |
|
|
and Vladimir Korviakov and Vladimir Polovnikov and Viacheslav Vasilev |
|
|
and Evelina Sidorova and Denis Dimitrov}, |
|
|
year={2025}, |
|
|
eprint={2507.13546}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CV}, |
|
|
url={https://arxiv.org/abs/2507.13546}, |
|
|
} |
|
|
``` |