Model Overview
- Model Architecture: DeepSeek-R1
- Input: Text
- Output: Text
- Supported Hardware Microarchitecture: AMD MI350/MI355
- ROCm: 7.0
- Operating System(s): Linux
- Inference Engine: SGLang
- Model Optimizer: AMD-Quark
- Weight quantization: OCP MXFP4, Static
- Activation quantization: OCP MXFP4, Dynamic
- Calibration Dataset: Pile
This model was built with deepseek-ai DeepSeek-R1 model by applying AMD-Quark for MXFP4 quantization.
Model Quantization
The model was quantized from deepseek-ai/DeepSeek-R1 using AMD-Quark. Both weights and activations were quantized to MXFP4 format, and the AutoSmoothQuant algorithm was applied to enhance accuracy.
Preprocessing requirement:
Before executing the quantization script below, the original FP8 model must first be dequantized to BFloat16. You can either perform the dequantization manually using this conversion script, or use the pre-converted BFloat16 model available at unsloth/DeepSeek-R1-BF16.
Quantization scripts:
cd Quark/examples/torch/language_modeling/llm_ptq/
exclude_layers="*self_attn* *mlp.gate.* *lm_head"
python3 quantize_quark.py --model_dir $MODEL_DIR \
--quant_scheme w_mxfp4_a_mxfp4 \
--group_size 32 \
--num_calib_data 128 \
--exclude_layers $exclude_layers \
--multi_gpu \
--quant_algo autosmoothquant \
--model_export hf_format \
--output_dir amd/DeepSeek-R1-MXFP4-ASQ
Deployment
Use with SGLang
This model can be deployed efficiently using the SGLang backend.
Evaluation
The model was evaluated on reasoning tasks including AIME24, MMLU_COT, and GSM8K via forked lm-evaluation-harness .
Accuracy
| Benchmark | DeepSeek-R1 | DeepSeek-R1-MXFP4-ASQ(this model) | Recovery |
| AIME24 | 78.0 | 76.0 | 97.44% |
| MMLU_COT | 79.90 | 79.65 | 99.69% |
| GSM8K | 95.81 | 95.42 | 99.59% |
Reproduction
The results of AIME24 and MMLU_COT were obtained using SGLang while result of GSM8K was obtained using vLLM. All the evaluations were conducted via forked lm-evaluation-harness.
AIME24
# Launching server
python3 -m sglang.launch_server \
--model /data/DeepSeek-R1-WMXFP4-AMXFP4-Scale-UINT8-Attn-MoE-Quant/ \
--tp 8 \
--trust-remote-code \
--n-share-experts-fusion 8 \
--disable-radix-cache
# Evaluating
lm_eval --model local-completions \
--model_args model=amd/DeepSeek-R1-MXFP4-ASQ,base_url=http://localhost:30000/v1/completions,num_concurrent=999999,timeout=999999,tokenized_requests=False,max_length=32000,temperature=0.6,top_p=0.95 \
--tasks aime24 \
--num_fewshot 0 \
--gen_kwargs "do_sample=True,temperature=0.6,top_p=0.95,max_tokens=32000" \
--batch_size auto \
--log_samples \
--output_path output_data/aime24 2>&1 | tee logs/aime24.log
MMLU_COT
# Launching server
python3 -m sglang.launch_server \
--model amd/DeepSeek-R1-MXFP4-ASQ \
--tp 8 \
--trust-remote-code \
--chunked-prefill-size 32768 \
--mem-fraction-static 0.83
# Evaluating
lm_eval --model local-completions \
--model_args model=amd/DeepSeek-R1-MXFP4-ASQ,base_url=http://localhost:30000/v1/completions,num_concurrent=999999,timeout=999999,tokenized_requests=False,max_length=32000,temperature=0.6,top_p=0.95 \
--tasks mmlu_cot \
--num_fewshot 0 \
--gen_kwargs "do_sample=True,temperature=0.6,top_p=0.95,max_tokens=32000" \
--batch_size auto \
--log_samples \
--output_path output_data/mmmlu_cot 2>&1 | tee logs/mmmlu_cot.log
GSM8K
lm_eval --model local-completions \
--model_args model=amd/DeepSeek-R1-MXFP4-ASQ,base_url=http://localhost:30000/v1/completions,num_concurrent=999999,timeout=999999,tokenized_requests=False,max_length=8096 \
--tasks gsm8k \
--num_fewshot 5 \
--batch_size auto \
--log_samples \
--output_path output_data/gsm8k 2>&1 | tee logs/gsm8k.log
License
Modifications Copyright(c) 2025 Advanced Micro Devices, Inc. All rights reserved.
- Downloads last month
- 79
Model tree for amd/DeepSeek-R1-MXFP4-ASQ
Base model
deepseek-ai/DeepSeek-R1