distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5349
 - Accuracy: 0.87
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
 - train_batch_size: 8
 - eval_batch_size: 8
 - seed: 42
 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 - lr_scheduler_type: linear
 - lr_scheduler_warmup_ratio: 0.1
 - num_epochs: 10
 - mixed_precision_training: Native AMP
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 
|---|---|---|---|---|
| 1.9628 | 1.0 | 113 | 1.9296 | 0.47 | 
| 1.2246 | 2.0 | 226 | 1.2770 | 0.62 | 
| 0.9369 | 3.0 | 339 | 1.0095 | 0.72 | 
| 0.7699 | 4.0 | 452 | 0.7454 | 0.8 | 
| 0.4939 | 5.0 | 565 | 0.6171 | 0.84 | 
| 0.4433 | 6.0 | 678 | 0.5770 | 0.86 | 
| 0.3029 | 7.0 | 791 | 0.5737 | 0.85 | 
| 0.1695 | 8.0 | 904 | 0.4982 | 0.86 | 
| 0.092 | 9.0 | 1017 | 0.5340 | 0.86 | 
| 0.0925 | 10.0 | 1130 | 0.5349 | 0.87 | 
Framework versions
- Transformers 4.35.2
 - Pytorch 2.1.0+cu118
 - Datasets 2.15.0
 - Tokenizers 0.15.0
 
- Downloads last month
 - -
 
Model tree for ankity09/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert