qwen3-4b-question-gen
Fine-tuned model for generating technical screening questions, trained using GRPO (Group Relative Policy Optimization) with LoRA adapters.
Base Model
- Base: Qwen/Qwen3-4B-Instruct-2507
- Training: LoRA fine-tuning with RL (GRPO algorithm)
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("ash256/qwen3-4b-question-gen")
tokenizer = AutoTokenizer.from_pretrained("ash256/qwen3-4b-question-gen")
prompt = "Generate a technical screening question for a senior backend engineer:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Or with vLLM for faster inference:
from vllm import LLM, SamplingParams
llm = LLM(model="ash256/qwen3-4b-question-gen")
outputs = llm.generate(["Generate a technical screening question for a senior backend engineer:"], SamplingParams(max_tokens=256))
print(outputs[0].outputs[0].text)
- Downloads last month
- 60
Model tree for ash256/qwen3-4b-question-gen
Base model
Qwen/Qwen3-4B-Instruct-2507