qwen3-4b-question-gen

Fine-tuned model for generating technical screening questions, trained using GRPO (Group Relative Policy Optimization) with LoRA adapters.

Base Model

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("ash256/qwen3-4b-question-gen")
tokenizer = AutoTokenizer.from_pretrained("ash256/qwen3-4b-question-gen")

prompt = "Generate a technical screening question for a senior backend engineer:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Or with vLLM for faster inference:

from vllm import LLM, SamplingParams

llm = LLM(model="ash256/qwen3-4b-question-gen")
outputs = llm.generate(["Generate a technical screening question for a senior backend engineer:"], SamplingParams(max_tokens=256))
print(outputs[0].outputs[0].text)
Downloads last month
60
Safetensors
Model size
4B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ash256/qwen3-4b-question-gen

Adapter
(113)
this model