Merged LLaMA 3.1 8B Model
This model is a merged version of the base LLaMA 3.1 8B Instruct model with LoRA fine-tuning.
Model Details
- Base Model: meta-llama/Meta-Llama-3.1-8B-Instruct
- LoRA Model: atacod/llama-3.1-8b-test-finetuning
- Model Type: Causal Language Model
- Architecture: LLaMA 3.1
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "your-username/your-repo-name"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto"
)
# Example usage
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Your prompt here"}
]
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
)
outputs = model.generate(
input_ids,
max_new_tokens=256,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = tokenizer.decode(outputs[0][input_ids.shape[1]:], skip_special_tokens=True)
print(response)
Training Details
This model was fine-tuned using LoRA (Low-Rank Adaptation) technique and then merged with the base model for easier deployment.
Limitations
Please refer to the base model limitations and use responsibly.
- Downloads last month
- -
Model tree for atacod/merge_llama-3.1-8b
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct