Files changed (1) hide show
  1. README.md +75 -64
README.md CHANGED
@@ -1,65 +1,76 @@
1
- ---
2
- base_model:
3
- - Qwen/Qwen2.5-3B-Instruct
4
- tags:
5
- - text-generation-inference
6
- - transformers
7
- - qwen2
8
- - trl
9
- - sft
10
- license: apache-2.0
11
- language:
12
- - en
13
- - vi
14
- datasets:
15
- - beyoru/Tin_hoc_mcq
16
- ---
17
-
18
- # Uploaded model
19
-
20
- - **Developed by:** beyoru
21
- - **License:** apache-2.0
22
-
23
- # Usage
24
- ```
25
- from transformers import AutoModelForCausalLM, AutoTokenizer
26
-
27
- model_name = "beyoru/MCQ-3B-o1-1"
28
-
29
- model = AutoModelForCausalLM.from_pretrained(
30
- model_name,
31
- torch_dtype="auto",
32
- device_map="auto"
33
- )
34
- tokenizer = AutoTokenizer.from_pretrained(model_name)
35
-
36
- messages = [
37
- {"role": "system", "content": "Tạo một câu hỏi trắc nghiệm về"},
38
- {"role": "user", "content": "<YOUR CONTEXT>"}
39
- ]
40
- text = tokenizer.apply_chat_template(
41
- messages,
42
- tokenize=False,
43
- add_generation_prompt=True
44
- )
45
- model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
46
-
47
- generated_ids = model.generate(
48
- **model_inputs,
49
- do_sample=True
50
- )
51
- generated_ids = [
52
- output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
53
- ]
54
-
55
- response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
56
- ```
57
-
58
- # Notes:
59
- - For small datasets with narrow content which the model has already done well on our domain, and doesn't want the model to forget the knowledge => Just need to focus on o.
60
- - Fine-tuned lora with rank = 1 and alpha = 1, epoch = 1, linear (optim)
61
- - DoRA
62
-
63
- # Improvement
64
- - Increasing rank can help the model do better at robust structure.
 
 
 
 
 
 
 
 
 
 
 
65
  - Try more efficient fine-tuning
 
1
+ ---
2
+ base_model:
3
+ - Qwen/Qwen2.5-3B-Instruct
4
+ tags:
5
+ - text-generation-inference
6
+ - transformers
7
+ - qwen2
8
+ - trl
9
+ - sft
10
+ license: apache-2.0
11
+ language:
12
+ - zho
13
+ - eng
14
+ - fra
15
+ - spa
16
+ - por
17
+ - deu
18
+ - ita
19
+ - rus
20
+ - jpn
21
+ - kor
22
+ - vie
23
+ - tha
24
+ - ara
25
+ datasets:
26
+ - beyoru/Tin_hoc_mcq
27
+ ---
28
+
29
+ # Uploaded model
30
+
31
+ - **Developed by:** beyoru
32
+ - **License:** apache-2.0
33
+
34
+ # Usage
35
+ ```
36
+ from transformers import AutoModelForCausalLM, AutoTokenizer
37
+
38
+ model_name = "beyoru/MCQ-3B-o1-1"
39
+
40
+ model = AutoModelForCausalLM.from_pretrained(
41
+ model_name,
42
+ torch_dtype="auto",
43
+ device_map="auto"
44
+ )
45
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
46
+
47
+ messages = [
48
+ {"role": "system", "content": "Tạo một câu hỏi trắc nghiệm về"},
49
+ {"role": "user", "content": "<YOUR CONTEXT>"}
50
+ ]
51
+ text = tokenizer.apply_chat_template(
52
+ messages,
53
+ tokenize=False,
54
+ add_generation_prompt=True
55
+ )
56
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
57
+
58
+ generated_ids = model.generate(
59
+ **model_inputs,
60
+ do_sample=True
61
+ )
62
+ generated_ids = [
63
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
64
+ ]
65
+
66
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
67
+ ```
68
+
69
+ # Notes:
70
+ - For small datasets with narrow content which the model has already done well on our domain, and doesn't want the model to forget the knowledge => Just need to focus on o.
71
+ - Fine-tuned lora with rank = 1 and alpha = 1, epoch = 1, linear (optim)
72
+ - DoRA
73
+
74
+ # Improvement
75
+ - Increasing rank can help the model do better at robust structure.
76
  - Try more efficient fine-tuning