metadata
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:67190
- loss:AdaptiveLayerLoss
- loss:MultipleNegativesRankingLoss
base_model: microsoft/deberta-v3-small
datasets:
- stanfordnlp/snli
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: A worker peers out from atop a building under construction.
sentences:
- The man pleads for mercy.
- People and a baby crossing the street.
- A person is atop of a building.
- source_sentence: >-
An aisle at Best Buy with an employee standing at the computer and a Geek
Squad sign in the background.
sentences:
- the man is watching the stars
- The employee is wearing a blue shirt.
- A person balancing.
- source_sentence: >-
A man with a long white beard is examining a camera and another man with a
black shirt is in the background.
sentences:
- a man is with another man
- Children in uniforms climb a tower.
- There are five children.
- source_sentence: A black dog with a blue collar is jumping into the water.
sentences:
- The dog is playing tug of war with a stick.
- There is a woman painting.
- A black dog wearing a blue collar is chasing something into the water.
- source_sentence: A wet child stands in chest deep ocean water.
sentences:
- A woman paints a portrait of her best friend.
- A person in red is cutting the grass on a riding mower
- The child s playing on the beach.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on microsoft/deberta-v3-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.6583157259281618
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.6766541004180908
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.7049362860324137
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6017583012580872
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.6115046147241897
name: Cosine Precision
- type: cosine_recall
value: 0.8320677570093458
name: Cosine Recall
- type: cosine_ap
value: 0.6995030811464378
name: Cosine Ap
- type: dot_accuracy
value: 0.6272260790824027
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 163.25054931640625
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.6976381461675579
name: Dot F1
- type: dot_f1_threshold
value: 119.20779418945312
name: Dot F1 Threshold
- type: dot_precision
value: 0.5639409221902018
name: Dot Precision
- type: dot_recall
value: 0.914427570093458
name: Dot Recall
- type: dot_ap
value: 0.643747511442345
name: Dot Ap
- type: manhattan_accuracy
value: 0.6571083610021129
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 243.75453186035156
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.7055783910745744
name: Manhattan F1
- type: manhattan_f1_threshold
value: 295.95947265625
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.5900608917697898
name: Manhattan Precision
- type: manhattan_recall
value: 0.8773364485981309
name: Manhattan Recall
- type: manhattan_ap
value: 0.7072033306346501
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.6590703290069424
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 12.141830444335938
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.7036813518406759
name: Euclidean F1
- type: euclidean_f1_threshold
value: 14.197540283203125
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.5996708496194199
name: Euclidean Precision
- type: euclidean_recall
value: 0.8513434579439252
name: Euclidean Recall
- type: euclidean_ap
value: 0.7035256676322055
name: Euclidean Ap
- type: max_accuracy
value: 0.6590703290069424
name: Max Accuracy
- type: max_accuracy_threshold
value: 243.75453186035156
name: Max Accuracy Threshold
- type: max_f1
value: 0.7055783910745744
name: Max F1
- type: max_f1_threshold
value: 295.95947265625
name: Max F1 Threshold
- type: max_precision
value: 0.6115046147241897
name: Max Precision
- type: max_recall
value: 0.914427570093458
name: Max Recall
- type: max_ap
value: 0.7072033306346501
name: Max Ap
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.732169941341086
name: Pearson Cosine
- type: spearman_cosine
value: 0.7344587206087978
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7537099624360986
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7550555196955944
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7468210439584286
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.74849026008206
name: Spearman Euclidean
- type: pearson_dot
value: 0.6142835401925993
name: Pearson Dot
- type: spearman_dot
value: 0.6100201108417316
name: Spearman Dot
- type: pearson_max
value: 0.7537099624360986
name: Pearson Max
- type: spearman_max
value: 0.7550555196955944
name: Spearman Max
SentenceTransformer based on microsoft/deberta-v3-small
This is a sentence-transformers model finetuned from microsoft/deberta-v3-small on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/deberta-v3-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2")
# Run inference
sentences = [
'A wet child stands in chest deep ocean water.',
'The child s playing on the beach.',
'A woman paints a portrait of her best friend.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.6583 |
| cosine_accuracy_threshold | 0.6767 |
| cosine_f1 | 0.7049 |
| cosine_f1_threshold | 0.6018 |
| cosine_precision | 0.6115 |
| cosine_recall | 0.8321 |
| cosine_ap | 0.6995 |
| dot_accuracy | 0.6272 |
| dot_accuracy_threshold | 163.2505 |
| dot_f1 | 0.6976 |
| dot_f1_threshold | 119.2078 |
| dot_precision | 0.5639 |
| dot_recall | 0.9144 |
| dot_ap | 0.6437 |
| manhattan_accuracy | 0.6571 |
| manhattan_accuracy_threshold | 243.7545 |
| manhattan_f1 | 0.7056 |
| manhattan_f1_threshold | 295.9595 |
| manhattan_precision | 0.5901 |
| manhattan_recall | 0.8773 |
| manhattan_ap | 0.7072 |
| euclidean_accuracy | 0.6591 |
| euclidean_accuracy_threshold | 12.1418 |
| euclidean_f1 | 0.7037 |
| euclidean_f1_threshold | 14.1975 |
| euclidean_precision | 0.5997 |
| euclidean_recall | 0.8513 |
| euclidean_ap | 0.7035 |
| max_accuracy | 0.6591 |
| max_accuracy_threshold | 243.7545 |
| max_f1 | 0.7056 |
| max_f1_threshold | 295.9595 |
| max_precision | 0.6115 |
| max_recall | 0.9144 |
| max_ap | 0.7072 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.7322 |
| spearman_cosine | 0.7345 |
| pearson_manhattan | 0.7537 |
| spearman_manhattan | 0.7551 |
| pearson_euclidean | 0.7468 |
| spearman_euclidean | 0.7485 |
| pearson_dot | 0.6143 |
| spearman_dot | 0.61 |
| pearson_max | 0.7537 |
| spearman_max | 0.7551 |
Training Details
Training Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 67,190 training samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 4 tokens
- mean: 21.19 tokens
- max: 133 tokens
- min: 4 tokens
- mean: 11.77 tokens
- max: 49 tokens
- 0: 100.00%
- Samples:
sentence1 sentence2 label Without a placebo group, we still won't know if any of the treatments are better than nothing and therefore worth giving.It is necessary to use a controlled method to ensure the treatments are worthwhile.0It was conducted in silence.It was done silently.0oh Lewisville any decent food in your cafeteria up thereIs there any decent food in your cafeteria up there in Lewisville?0 - Loss:
AdaptiveLayerLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1, "prior_layers_weight": 1, "kl_div_weight": 1, "kl_temperature": 1 }
Evaluation Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 1,500 evaluation samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 14.77 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 14.74 tokens
- max: 49 tokens
- min: 0.0
- mean: 0.47
- max: 1.0
- Samples:
sentence1 sentence2 score A man with a hard hat is dancing.A man wearing a hard hat is dancing.1.0A young child is riding a horse.A child is riding a horse.0.95A man is feeding a mouse to a snake.The man is feeding a mouse to the snake.1.0 - Loss:
AdaptiveLayerLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1, "prior_layers_weight": 1, "kl_div_weight": 1, "kl_temperature": 1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 42per_device_eval_batch_size: 22learning_rate: 3e-06weight_decay: 1e-08num_train_epochs: 2lr_scheduler_type: cosinewarmup_ratio: 0.5save_safetensors: Falsefp16: Truehub_model_id: bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2-tmphub_strategy: checkpointhub_private_repo: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 42per_device_eval_batch_size: 22per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 3e-06weight_decay: 1e-08adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.5warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Falsesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2-tmphub_strategy: checkpointhub_private_repo: Truehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | max_ap | spearman_cosine |
|---|---|---|---|---|---|
| 0.1 | 160 | 4.6003 | 4.8299 | 0.6017 | - |
| 0.2 | 320 | 4.0659 | 4.3436 | 0.6168 | - |
| 0.3 | 480 | 3.4886 | 4.0840 | 0.6339 | - |
| 0.4 | 640 | 3.0592 | 3.6422 | 0.6611 | - |
| 0.5 | 800 | 2.5728 | 3.1927 | 0.6773 | - |
| 0.6 | 960 | 2.184 | 2.8322 | 0.6893 | - |
| 0.7 | 1120 | 1.8744 | 2.4892 | 0.6954 | - |
| 0.8 | 1280 | 1.757 | 2.4453 | 0.7002 | - |
| 0.9 | 1440 | 1.5872 | 2.2565 | 0.7010 | - |
| 1.0 | 1600 | 1.446 | 2.1391 | 0.7046 | - |
| 1.1 | 1760 | 1.3892 | 2.1236 | 0.7058 | - |
| 1.2 | 1920 | 1.2567 | 1.9738 | 0.7053 | - |
| 1.3 | 2080 | 1.2233 | 1.8925 | 0.7063 | - |
| 1.4 | 2240 | 1.1954 | 1.8392 | 0.7075 | - |
| 1.5 | 2400 | 1.1395 | 1.9081 | 0.7065 | - |
| 1.6 | 2560 | 1.1211 | 1.8080 | 0.7074 | - |
| 1.7 | 2720 | 1.0825 | 1.8408 | 0.7073 | - |
| 1.8 | 2880 | 1.1358 | 1.7363 | 0.7073 | - |
| 1.9 | 3040 | 1.0628 | 1.8936 | 0.7072 | - |
| 2.0 | 3200 | 1.1412 | 1.7846 | 0.7072 | - |
| None | 0 | - | 3.0121 | 0.7072 | 0.7345 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AdaptiveLayerLoss
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}