T5-Json-Parsing-Model: Improved Evaluation Report
Fine-tuned T5 model for structured JSON metadata extraction from unstructured text
Model Overview
T5-Json-Parsing-Model is a text-to-JSON generation model based on T5, specifically fine-tuned to:
- Parse unstructured input
- Identify key entities and attributes
- Output valid JSON with consistent schema
Goal:
"extract metadata: ..."→{"type": "...", "name": "...", ...}
Evaluation Results
| Metric | Score | Interpretation |
|---|---|---|
| Exact-Match Accuracy | 4.33% | Very low — strict JSON format not followed |
| JSON Structural Accuracy | 1.33% | Almost no outputs are valid JSON |
| ROUGE-1 | 53.92 | Good unigram overlap |
| ROUGE-2 | 38.33 | Moderate bigram matching |
| ROUGE-L | 51.53 | Strong sequence preservation |
| BLEU Score | 27.69 | Decent n-gram precision |
Insight:
The model understands the content well (high ROUGE/BLEU), but fails to produce valid JSON syntax.
Inference Example
Input Prompt
extract metadata: John Smith, born in 1980, lives in New York, works as a data scientist.
### Inference :
```python
input_text = "extract metadata: John Smith, born in 1980, lives in New York, works as a data scientist."
input_ids = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True).input_ids
# Generate text using the model's generate method
generated_ids = model.generate(input_ids, max_new_tokens=50, num_beams=5, early_stopping=True)
# Decode the generated IDs to text
decoded_output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print(json.loads("{" + decoded_output[1:-1] + "}"))
output :
{'type': 'person', 'name': 'John Smith', 'yr_born': '1980', 'location': 'New York'}
- Downloads last month
- 8
Model tree for boopathiraj/T5-Json-Parsing-Model
Base model
google-t5/t5-small