EchoVLM (paper implementation)
Official PyTorch implementation of the model described in
"EchoVLM: Dynamic Mixture-of-Experts Vision-Language Model for Universal Ultrasound Intelligence".
๐ค Model Details
| Item | Value |
|---|---|
| Paper | arXiv:2509.14977 |
| Authors | Chaoyin Sheยน, Ruifang Luยฒ |
| Code | GitHub repo |
| Model Hub | Hugging Face |
๐ Updates
- Sep 19, 2025: Released model weights on Hugging Face.
- Sep 17, 2025: Paper published on arXiv.
- Coming soon: V2 with Chain-of-Thought reasoning and reinforcement learning enhancements.
๐ Quick Start
Using ๐ค Transformers to Chat
Here we show a code snippet to show you how to use the chat model with transformers and qwen_vl_utils:
from transformers import Qwen2VLMOEForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
# ===== 1. Load model & processor =====
model = Qwen2VLMOEForConditionalGeneration.from_pretrained(
"chaoyinshe/EchoVLM",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2", # faster & memory-efficient
device_map="auto",
)
processor = AutoProcessor.from_pretrained("chaoyinshe/EchoVLM")
# The default range for the number of visual tokens per image in the model is 4-16384.
# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
# min_pixels = 256*28*28
# max_pixels = 1280*28*28
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "An ultrasound image",
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
Multi image inference
# Messages containing multiple images and a text query
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "ultrasound image 1"},
{"type": "image", "image": "ultrasound image 2"},
{"type": "text", "text": "ๅธฎๆ็ปๅบ่ถ
ๅฃฐๆฅๅ"},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
Batch inference
# Sample messages for batch inference
messages1 = [
{
"role": "user",
"content": [
{"type": "image", "image": "file:///path/to/image1.jpg"},
{"type": "image", "image": "file:///path/to/image2.jpg"},
{"type": "text", "text": "This patient has a hypoechoic nodule in the left breast. What is the next step in treatment?"},
],
}
]
messages2 = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who are you?"},
]
# Combine messages for batch processing
messages = [messages1, messages2]
# Preparation for batch inference
texts = [
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
for msg in messages
]
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=texts,
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Batch Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_texts = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_texts)
๐ Citation
If you use this model or code in your research, please cite:
@misc{she2025echovlmdynamicmixtureofexpertsvisionlanguage,
title={EchoVLM: Dynamic Mixture-of-Experts Vision-Language Model for Universal Ultrasound Intelligence},
author={Chaoyin She and Ruifang Lu and Lida Chen and Wei Wang and Qinghua Huang},
year={2025},
eprint={2509.14977},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2509.14977},
}
- Downloads last month
- 143