See axolotl config
axolotl version: 0.12.0.dev0
base_model: google/gemma-3-270m-it
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
ddp_find_unused_parameters: true
load_in_8bit: false
load_in_4bit: false
chat_template: gemma3
eot_tokens:
- "<end_of_turn>"
datasets:
- path: HuggingFaceH4/CodeAlpaca_20K
type:
field_instruction: prompt
field_input: input
field_output: output
format: |
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:
no_input_format: |
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:
val_set_size: 0.05 # Use 5% of the data for validation
output_dir: ./outputs/gemma-3-270m-codealpaca-finetune
sequence_len: 2048
sample_packing: true
eval_sample_packing: false
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00002
bf16: true
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 1
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
outputs/gemma-3-270m-codealpaca-finetune
This model is a fine-tuned version of google/gemma-3-270m-it on the HuggingFaceH4/CodeAlpaca_20K dataset. It achieves the following results on the evaluation set:
- Loss: nan
- Memory/max Memory Active(gib): 8.51
- Memory/max Memory Allocated(gib): 8.51
- Memory/device Memory Reserved(gib): 10.27
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 34
- training_steps: 348
Training results
| Training Loss | Epoch | Step | Validation Loss | Memory Active(gib) | Memory Allocated(gib) | Memory Reserved(gib) |
|---|---|---|---|---|---|---|
| No log | 0 | 0 | nan | 5.84 | 5.84 | 5.86 |
| 0.0 | 0.9978 | 116 | nan | 8.51 | 8.51 | 10.27 |
| 0.0 | 1.9892 | 232 | nan | 8.51 | 8.51 | 10.27 |
| 0.0 | 2.9806 | 348 | nan | 8.51 | 8.51 | 10.27 |
Framework versions
- Transformers 4.55.0
- Pytorch 2.6.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 12