|
|
--- |
|
|
license: mit |
|
|
datasets: |
|
|
- cnmoro/LexicalTriplets |
|
|
language: |
|
|
- en |
|
|
- pt |
|
|
pipeline_tag: feature-extraction |
|
|
library_name: sentence-transformers |
|
|
--- |
|
|
|
|
|
This is a model trained on [cnmoro/LexicalTriplets](https://huggingface.co/datasets/cnmoro/LexicalTriplets) to produce lexical embeddings (not semantic!) |
|
|
|
|
|
This can be used to compute lexical similarity between words or phrases. |
|
|
|
|
|
Concept: |
|
|
|
|
|
"Some text" will be similar to "Sm txt" |
|
|
|
|
|
"King" will **not** be similar to "Queen" or "Royalty" |
|
|
|
|
|
"Dog" will **not** be similar to "Animal" |
|
|
|
|
|
"Doge" will be similar to "Dog" |
|
|
|
|
|
```python |
|
|
import torch, re, unicodedata |
|
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
|
|
model_name = "cnmoro/LexicalEmbed-Base" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
model = AutoModel.from_pretrained(model_name, trust_remote_code=True) |
|
|
model.eval() |
|
|
|
|
|
def preprocess(text): |
|
|
text = unicodedata.normalize('NFD', text) |
|
|
text = ''.join(c for c in text if unicodedata.category(c) != 'Mn') |
|
|
text = re.sub(r'[^\w\s]+', ' ', text.lower()) |
|
|
return re.sub(r'\s+', ' ', text).strip() |
|
|
|
|
|
texts = ["hello world", "hel wor"] |
|
|
texts = [ preprocess(s) for s in texts ] |
|
|
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
|
embeddings = model(**inputs) |
|
|
|
|
|
cosine_sim = torch.nn.functional.cosine_similarity(embeddings[0], embeddings[1], dim=0) |
|
|
print(f"Cosine Similarity: {cosine_sim.item()}") # 0.8966174125671387 |
|
|
``` |