1340d36ede0c81b6593f76f4319ef191
This model is a fine-tuned version of albert/albert-large-v2 on the nyu-mll/glue dataset. It achieves the following results on the evaluation set:
- Loss: 2.3085
- Data Size: 1.0
- Epoch Runtime: 12.9833
- Mse: 2.3093
- Mae: 1.2894
- R2: -0.0330
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Mse | Mae | R2 |
|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 8.3843 | 0 | 1.5129 | 8.3856 | 2.4799 | -2.7512 |
| No log | 1 | 179 | 3.4279 | 0.0078 | 1.8985 | 3.4289 | 1.5488 | -0.5339 |
| No log | 2 | 358 | 2.6515 | 0.0156 | 1.7839 | 2.6523 | 1.3766 | -0.1865 |
| No log | 3 | 537 | 2.4839 | 0.0312 | 1.9344 | 2.4845 | 1.2990 | -0.1114 |
| No log | 4 | 716 | 2.3451 | 0.0625 | 2.2913 | 2.3459 | 1.2966 | -0.0494 |
| No log | 5 | 895 | 2.2858 | 0.125 | 3.0195 | 2.2866 | 1.2935 | -0.0229 |
| 0.1597 | 6 | 1074 | 2.2858 | 0.25 | 4.4264 | 2.2866 | 1.2838 | -0.0229 |
| 2.1809 | 7 | 1253 | 2.6532 | 0.5 | 7.3157 | 2.6539 | 1.3473 | -0.1872 |
| 2.0324 | 8.0 | 1432 | 2.7158 | 1.0 | 13.0868 | 2.7164 | 1.3496 | -0.2151 |
| 2.2306 | 9.0 | 1611 | 2.3085 | 1.0 | 12.9833 | 2.3093 | 1.2894 | -0.0330 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 2
Model tree for contemmcm/1340d36ede0c81b6593f76f4319ef191
Base model
albert/albert-large-v2