19baa7b9dae90eabb07224a6ac31098b
This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the contemmcm/amazon_reviews_2013 [cell-phone] dataset. It achieves the following results on the evaluation set:
- Loss: 1.2118
- Data Size: 1.0
- Epoch Runtime: 69.7131
- Accuracy: 0.6550
- F1 Macro: 0.5886
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.5968 | 0 | 5.2112 | 0.2384 | 0.1117 |
| No log | 1 | 1973 | 1.5006 | 0.0078 | 6.0295 | 0.3899 | 0.1387 |
| 0.0316 | 2 | 3946 | 1.3779 | 0.0156 | 6.1610 | 0.4298 | 0.2083 |
| 1.2476 | 3 | 5919 | 1.1972 | 0.0312 | 7.1579 | 0.4987 | 0.2796 |
| 1.0789 | 4 | 7892 | 1.0345 | 0.0625 | 9.2532 | 0.5612 | 0.4372 |
| 0.9288 | 5 | 9865 | 0.8951 | 0.125 | 13.3585 | 0.6249 | 0.5314 |
| 0.8727 | 6 | 11838 | 0.8392 | 0.25 | 21.3606 | 0.6523 | 0.5580 |
| 0.8609 | 7 | 13811 | 0.8048 | 0.5 | 38.3610 | 0.6623 | 0.5926 |
| 0.7663 | 8.0 | 15784 | 0.8070 | 1.0 | 69.7185 | 0.6554 | 0.6037 |
| 0.6575 | 9.0 | 17757 | 0.8013 | 1.0 | 68.6924 | 0.6766 | 0.5995 |
| 0.5312 | 10.0 | 19730 | 0.9003 | 1.0 | 69.6074 | 0.6427 | 0.5930 |
| 0.4557 | 11.0 | 21703 | 0.9741 | 1.0 | 70.2688 | 0.6566 | 0.5940 |
| 0.3856 | 12.0 | 23676 | 1.0758 | 1.0 | 69.6125 | 0.6596 | 0.5898 |
| 0.3078 | 13.0 | 25649 | 1.2118 | 1.0 | 69.7131 | 0.6550 | 0.5886 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.2.0
- Tokenizers 0.22.1
- Downloads last month
- 10