30b0526056475a6b2cb340ed84fbb08b
This model is a fine-tuned version of google-bert/bert-large-uncased-whole-word-masking on the nyu-mll/glue [mrpc] dataset. It achieves the following results on the evaluation set:
- Loss: 0.5841
- Data Size: 1.0
- Epoch Runtime: 14.3838
- Accuracy: 0.8160
- F1 Macro: 0.7917
- Rouge1: 0.8160
- Rouge2: 0.0
- Rougel: 0.8160
- Rougelsum: 0.8160
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.9445 | 0 | 1.9024 | 0.3384 | 0.2568 | 0.3379 | 0.0 | 0.3390 | 0.3387 |
| No log | 1 | 114 | 1.0493 | 0.0078 | 2.0931 | 0.3402 | 0.2732 | 0.3396 | 0.0 | 0.3402 | 0.3402 |
| No log | 2 | 228 | 0.8165 | 0.0156 | 2.4936 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| No log | 3 | 342 | 0.6571 | 0.0312 | 3.0275 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.0233 | 4 | 456 | 0.6117 | 0.0625 | 3.8493 | 0.6963 | 0.5588 | 0.6963 | 0.0 | 0.6958 | 0.6958 |
| 0.0233 | 5 | 570 | 0.6698 | 0.125 | 4.7146 | 0.6875 | 0.4757 | 0.6881 | 0.0 | 0.6875 | 0.6875 |
| 0.0233 | 6 | 684 | 0.5363 | 0.25 | 6.1156 | 0.7966 | 0.7617 | 0.7966 | 0.0 | 0.7966 | 0.7972 |
| 0.1263 | 7 | 798 | 0.3936 | 0.5 | 8.6330 | 0.8384 | 0.8217 | 0.8390 | 0.0 | 0.8384 | 0.8390 |
| 0.3373 | 8.0 | 912 | 0.4000 | 1.0 | 14.7838 | 0.8208 | 0.7736 | 0.8208 | 0.0 | 0.8208 | 0.8208 |
| 0.1779 | 9.0 | 1026 | 0.4777 | 1.0 | 14.7321 | 0.8119 | 0.7632 | 0.8122 | 0.0 | 0.8119 | 0.8122 |
| 0.1441 | 10.0 | 1140 | 0.6239 | 1.0 | 14.0898 | 0.8249 | 0.7922 | 0.8249 | 0.0 | 0.8249 | 0.8255 |
| 0.1813 | 11.0 | 1254 | 0.5841 | 1.0 | 14.3838 | 0.8160 | 0.7917 | 0.8160 | 0.0 | 0.8160 | 0.8160 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 9