357d350da953a816816f5d421631ebca
This model is a fine-tuned version of distilbert/distilbert-base-uncased-distilled-squad on the dim/tldr_news dataset. It achieves the following results on the evaluation set:
- Loss: 1.2177
- Data Size: 1.0
- Epoch Runtime: 6.5230
- Accuracy: 0.7457
- F1 Macro: 0.7818
- Rouge1: 0.7457
- Rouge2: 0.0
- Rougel: 0.7450
- Rougelsum: 0.7450
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.6564 | 0 | 0.9976 | 0.0185 | 0.0082 | 0.0185 | 0.0 | 0.0185 | 0.0185 |
| No log | 1 | 178 | 1.5166 | 0.0078 | 2.3233 | 0.2429 | 0.0819 | 0.2429 | 0.0 | 0.2436 | 0.2429 |
| No log | 2 | 356 | 1.4090 | 0.0156 | 1.2717 | 0.4446 | 0.2390 | 0.4453 | 0.0 | 0.4453 | 0.4439 |
| No log | 3 | 534 | 1.1799 | 0.0312 | 1.7685 | 0.6477 | 0.4803 | 0.6484 | 0.0 | 0.6484 | 0.6477 |
| No log | 4 | 712 | 0.9568 | 0.0625 | 1.9427 | 0.6612 | 0.4935 | 0.6619 | 0.0 | 0.6619 | 0.6612 |
| No log | 5 | 890 | 0.7724 | 0.125 | 2.2570 | 0.6911 | 0.5139 | 0.6925 | 0.0 | 0.6911 | 0.6911 |
| 0.0616 | 6 | 1068 | 0.6960 | 0.25 | 2.5959 | 0.7266 | 0.6262 | 0.7273 | 0.0 | 0.7269 | 0.7273 |
| 0.562 | 7 | 1246 | 0.6171 | 0.5 | 3.9627 | 0.7585 | 0.7734 | 0.7592 | 0.0 | 0.7592 | 0.7578 |
| 0.4835 | 8.0 | 1424 | 0.6270 | 1.0 | 6.2698 | 0.7578 | 0.7858 | 0.7571 | 0.0 | 0.7585 | 0.7578 |
| 0.3017 | 9.0 | 1602 | 0.7640 | 1.0 | 6.1325 | 0.7493 | 0.7881 | 0.75 | 0.0 | 0.75 | 0.7486 |
| 0.2016 | 10.0 | 1780 | 0.9923 | 1.0 | 6.2195 | 0.7294 | 0.7717 | 0.7301 | 0.0 | 0.7298 | 0.7294 |
| 0.0952 | 11.0 | 1958 | 1.2177 | 1.0 | 6.5230 | 0.7457 | 0.7818 | 0.7457 | 0.0 | 0.7450 | 0.7450 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 5