35ea3f9d06d0517cdcbbd091b3aeadbe
This model is a fine-tuned version of google-bert/bert-large-uncased-whole-word-masking on the nyu-mll/glue [stsb] dataset. It achieves the following results on the evaluation set:
- Loss: 0.5116
- Data Size: 1.0
- Epoch Runtime: 20.7935
- Mse: 0.5116
- Mae: 0.5382
- R2: 0.7711
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Mse | Mae | R2 |
|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 5.3002 | 0 | 1.6842 | 5.3013 | 1.8977 | -1.3715 |
| No log | 1 | 179 | 2.7334 | 0.0078 | 2.2262 | 2.7344 | 1.4062 | -0.2232 |
| No log | 2 | 358 | 2.4529 | 0.0156 | 2.4359 | 2.4537 | 1.2919 | -0.0976 |
| No log | 3 | 537 | 2.1676 | 0.0312 | 3.1648 | 2.1684 | 1.2449 | 0.0300 |
| No log | 4 | 716 | 1.6133 | 0.0625 | 4.4236 | 1.6139 | 1.0401 | 0.2781 |
| No log | 5 | 895 | 1.1087 | 0.125 | 5.9818 | 1.1091 | 0.8395 | 0.5039 |
| 0.1153 | 6 | 1074 | 1.1612 | 0.25 | 9.4758 | 1.1617 | 0.9112 | 0.4803 |
| 0.9415 | 7 | 1253 | 0.8926 | 0.5 | 12.2021 | 0.8931 | 0.7784 | 0.6005 |
| 1.518 | 8.0 | 1432 | 1.2209 | 1.0 | 21.0060 | 1.2215 | 0.9047 | 0.4536 |
| 0.5417 | 9.0 | 1611 | 0.6361 | 1.0 | 20.9045 | 0.6363 | 0.5943 | 0.7154 |
| 0.6933 | 10.0 | 1790 | 1.1218 | 1.0 | 20.5770 | 1.1225 | 0.8493 | 0.4979 |
| 0.43 | 11.0 | 1969 | 0.5633 | 1.0 | 20.3664 | 0.5637 | 0.5944 | 0.7478 |
| 0.4021 | 12.0 | 2148 | 0.6050 | 1.0 | 20.4252 | 0.6050 | 0.5840 | 0.7294 |
| 0.3134 | 13.0 | 2327 | 0.4976 | 1.0 | 20.3349 | 0.4978 | 0.5487 | 0.7773 |
| 0.2535 | 14.0 | 2506 | 0.5506 | 1.0 | 20.7725 | 0.5507 | 0.5635 | 0.7536 |
| 0.2374 | 15.0 | 2685 | 0.4726 | 1.0 | 20.3050 | 0.4727 | 0.5148 | 0.7885 |
| 0.2145 | 16.0 | 2864 | 0.5204 | 1.0 | 20.3881 | 0.5205 | 0.5441 | 0.7672 |
| 0.1836 | 17.0 | 3043 | 0.5648 | 1.0 | 20.5899 | 0.5650 | 0.5594 | 0.7472 |
| 0.1813 | 18.0 | 3222 | 0.4885 | 1.0 | 20.2269 | 0.4887 | 0.5275 | 0.7814 |
| 0.2288 | 19.0 | 3401 | 0.5116 | 1.0 | 20.7935 | 0.5116 | 0.5382 | 0.7711 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 18