3ba0289a98a5677344bb92be93321ea5
This model is a fine-tuned version of distilbert/distilbert-base-uncased-distilled-squad on the nyu-mll/glue [sst2] dataset. It achieves the following results on the evaluation set:
- Loss: 0.3801
- Data Size: 1.0
- Epoch Runtime: 55.1059
- Accuracy: 0.8935
- F1 Macro: 0.8934
- Rouge1: 0.8947
- Rouge2: 0.0
- Rougel: 0.8935
- Rougelsum: 0.8935
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.6993 | 0 | 0.8597 | 0.4919 | 0.3317 | 0.4919 | 0.0 | 0.4919 | 0.4931 |
| No log | 1 | 2104 | 0.5808 | 0.0078 | 1.8249 | 0.7963 | 0.7960 | 0.7963 | 0.0 | 0.7963 | 0.7963 |
| No log | 2 | 4208 | 0.4219 | 0.0156 | 1.7817 | 0.8056 | 0.8031 | 0.8044 | 0.0 | 0.8056 | 0.8056 |
| 0.0096 | 3 | 6312 | 0.3745 | 0.0312 | 2.7260 | 0.8368 | 0.8356 | 0.8368 | 0.0 | 0.8368 | 0.8368 |
| 0.3284 | 4 | 8416 | 0.2913 | 0.0625 | 4.4461 | 0.8692 | 0.8692 | 0.8692 | 0.0 | 0.8692 | 0.8692 |
| 0.2645 | 5 | 10520 | 0.2758 | 0.125 | 7.7715 | 0.8681 | 0.8680 | 0.8681 | 0.0 | 0.8681 | 0.8681 |
| 0.1971 | 6 | 12624 | 0.2813 | 0.25 | 14.3866 | 0.8889 | 0.8885 | 0.8889 | 0.0 | 0.8889 | 0.8889 |
| 0.1695 | 7 | 14728 | 0.3693 | 0.5 | 27.3830 | 0.8877 | 0.8871 | 0.8877 | 0.0 | 0.8877 | 0.8877 |
| 0.1588 | 8.0 | 16832 | 0.2904 | 1.0 | 53.1959 | 0.8924 | 0.8923 | 0.8924 | 0.0 | 0.8924 | 0.8924 |
| 0.1085 | 9.0 | 18936 | 0.3801 | 1.0 | 55.1059 | 0.8935 | 0.8934 | 0.8947 | 0.0 | 0.8935 | 0.8935 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 13