3d46f82bfd2431cafd42c285146e7e3c
This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the nyu-mll/glue [cola] dataset. It achieves the following results on the evaluation set:
- Loss: 0.9867
- Data Size: 1.0
- Epoch Runtime: 9.8389
- Accuracy: 0.7090
- F1 Macro: 0.6226
- Rouge1: 0.7090
- Rouge2: 0.0
- Rougel: 0.7090
- Rougelsum: 0.7100
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.7142 | 0 | 0.9053 | 0.3213 | 0.2580 | 0.3203 | 0.0 | 0.3213 | 0.3223 |
| No log | 1 | 267 | 0.6216 | 0.0078 | 1.7436 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| No log | 2 | 534 | 0.7136 | 0.0156 | 1.4116 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| No log | 3 | 801 | 0.6501 | 0.0312 | 1.7541 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| No log | 4 | 1068 | 0.6197 | 0.0625 | 1.9302 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.0371 | 5 | 1335 | 0.6244 | 0.125 | 2.3560 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.6008 | 6 | 1602 | 0.6051 | 0.25 | 3.4191 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.5807 | 7 | 1869 | 0.6334 | 0.5 | 5.4276 | 0.6963 | 0.4529 | 0.6973 | 0.0 | 0.6973 | 0.6963 |
| 0.4888 | 8.0 | 2136 | 0.6026 | 1.0 | 9.7041 | 0.7158 | 0.5587 | 0.7158 | 0.0 | 0.7158 | 0.7158 |
| 0.3535 | 9.0 | 2403 | 0.7003 | 1.0 | 9.5143 | 0.7168 | 0.6031 | 0.7178 | 0.0 | 0.7168 | 0.7168 |
| 0.2789 | 10.0 | 2670 | 0.8368 | 1.0 | 9.4838 | 0.7080 | 0.6271 | 0.7080 | 0.0 | 0.7080 | 0.7080 |
| 0.177 | 11.0 | 2937 | 1.0732 | 1.0 | 9.6678 | 0.7080 | 0.6132 | 0.7080 | 0.0 | 0.7080 | 0.7080 |
| 0.1924 | 12.0 | 3204 | 0.9867 | 1.0 | 9.8389 | 0.7090 | 0.6226 | 0.7090 | 0.0 | 0.7090 | 0.7100 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 12