49ed9bc4c55f01d46b2c12ab72ec9d62
This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the contemmcm/cls_mmlu dataset. It achieves the following results on the evaluation set:
- Loss: 2.0766
- Data Size: 1.0
- Epoch Runtime: 15.4281
- Accuracy: 0.2733
- F1 Macro: 0.2685
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.3892 | 0 | 1.0008 | 0.2340 | 0.1558 |
| No log | 1 | 438 | 1.3942 | 0.0078 | 1.5112 | 0.2527 | 0.1246 |
| No log | 2 | 876 | 1.3893 | 0.0156 | 1.4385 | 0.2520 | 0.1319 |
| No log | 3 | 1314 | 1.3910 | 0.0312 | 1.8313 | 0.2540 | 0.1051 |
| No log | 4 | 1752 | 1.3910 | 0.0625 | 2.3392 | 0.2487 | 0.0996 |
| 0.0777 | 5 | 2190 | 1.3923 | 0.125 | 3.0842 | 0.2706 | 0.1803 |
| 0.1834 | 6 | 2628 | 1.3844 | 0.25 | 5.0158 | 0.2699 | 0.2066 |
| 1.386 | 7 | 3066 | 1.3841 | 0.5 | 8.4317 | 0.2773 | 0.2081 |
| 1.3674 | 8.0 | 3504 | 1.3887 | 1.0 | 15.7729 | 0.2793 | 0.2412 |
| 1.2399 | 9.0 | 3942 | 1.4814 | 1.0 | 15.3051 | 0.2766 | 0.2609 |
| 0.9979 | 10.0 | 4380 | 1.7245 | 1.0 | 15.2724 | 0.2806 | 0.2733 |
| 0.7247 | 11.0 | 4818 | 2.0766 | 1.0 | 15.4281 | 0.2733 | 0.2685 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 8