5128385342b49e3f7be0ae7263d1c79e
This model is a fine-tuned version of albert/albert-large-v2 on the nyu-mll/glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.6220
- Data Size: 1.0
- Epoch Runtime: 18.3263
- Accuracy: 0.6885
- F1 Macro: 0.4078
- Rouge1: 0.6895
- Rouge2: 0.0
- Rougel: 0.6885
- Rougelsum: 0.6885
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.6854 | 0 | 1.2437 | 0.6113 | 0.5675 | 0.6113 | 0.0 | 0.6113 | 0.6113 |
| No log | 1 | 267 | 0.6257 | 0.0078 | 1.9318 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| No log | 2 | 534 | 0.6242 | 0.0156 | 1.7183 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| No log | 3 | 801 | 0.6690 | 0.0312 | 2.0585 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| No log | 4 | 1068 | 0.6735 | 0.0625 | 2.5321 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.0372 | 5 | 1335 | 0.6490 | 0.125 | 3.4723 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.6185 | 6 | 1602 | 0.6228 | 0.25 | 5.5109 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.6323 | 7 | 1869 | 0.6557 | 0.5 | 9.7213 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.6073 | 8.0 | 2136 | 0.6204 | 1.0 | 18.1081 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.6074 | 9.0 | 2403 | 0.6383 | 1.0 | 17.8469 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.6173 | 10.0 | 2670 | 0.6205 | 1.0 | 18.1830 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.6169 | 11.0 | 2937 | 0.6224 | 1.0 | 18.1427 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.6235 | 12.0 | 3204 | 0.6203 | 1.0 | 18.5313 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.6124 | 13.0 | 3471 | 0.6211 | 1.0 | 18.5623 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.6239 | 14.0 | 3738 | 0.6211 | 1.0 | 18.3426 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.5877 | 15.0 | 4005 | 0.6302 | 1.0 | 18.1930 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.6214 | 16.0 | 4272 | 0.6220 | 1.0 | 18.3263 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 2
Model tree for contemmcm/5128385342b49e3f7be0ae7263d1c79e
Base model
albert/albert-large-v2