61a9d4e5a3f5c2e482558bd336a0fca5

This model is a fine-tuned version of distilbert/distilgpt2 on the dair-ai/emotion [split] dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1776
  • Data Size: 1.0
  • Epoch Runtime: 21.2193
  • Accuracy: 0.9264
  • F1 Macro: 0.8772

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro
No log 0 0 5.7943 0 1.7046 0.1119 0.0335
No log 1 500 2.9745 0.0078 1.9954 0.2394 0.1062
No log 2 1000 1.8283 0.0156 2.2345 0.3347 0.1430
No log 3 1500 1.5442 0.0312 2.4292 0.3921 0.1494
No log 4 2000 1.3275 0.0625 3.0385 0.5101 0.2806
0.0797 5 2500 0.6951 0.125 4.2789 0.7470 0.5549
0.4781 6 3000 0.2765 0.25 6.6758 0.8931 0.8338
0.0358 7 3500 0.2785 0.5 11.4581 0.9133 0.8732
0.1806 8.0 4000 0.1357 1.0 21.8336 0.9284 0.8861
0.135 9.0 4500 0.1582 1.0 22.2750 0.9299 0.8889
0.1093 10.0 5000 0.1762 1.0 22.0260 0.9325 0.8951
0.084 11.0 5500 0.1902 1.0 22.2880 0.9309 0.8882
0.0877 12.0 6000 0.1776 1.0 21.2193 0.9264 0.8772

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
12
Safetensors
Model size
81.9M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/61a9d4e5a3f5c2e482558bd336a0fca5

Finetuned
(939)
this model