63a7ea29ceb53332fece3a51c3afb4e1
This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the nyu-mll/glue [sst2] dataset. It achieves the following results on the evaluation set:
- Loss: 0.4577
- Data Size: 1.0
- Epoch Runtime: 62.9634
- Accuracy: 0.8704
- F1 Macro: 0.8698
- Rouge1: 0.8704
- Rouge2: 0.0
- Rougel: 0.8704
- Rougelsum: 0.8704
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.6938 | 0 | 0.8183 | 0.4907 | 0.3292 | 0.4907 | 0.0 | 0.4907 | 0.4919 |
| No log | 1 | 2104 | 0.6383 | 0.0078 | 2.0832 | 0.6863 | 0.6859 | 0.6875 | 0.0 | 0.6869 | 0.6863 |
| No log | 2 | 4208 | 0.5321 | 0.0156 | 2.1470 | 0.7315 | 0.7260 | 0.7326 | 0.0 | 0.7315 | 0.7303 |
| 0.0114 | 3 | 6312 | 0.4603 | 0.0312 | 3.2891 | 0.7766 | 0.7764 | 0.7778 | 0.0 | 0.7766 | 0.7755 |
| 0.4211 | 4 | 8416 | 0.3908 | 0.0625 | 5.3066 | 0.8322 | 0.8322 | 0.8322 | 0.0 | 0.8322 | 0.8322 |
| 0.3555 | 5 | 10520 | 0.4744 | 0.125 | 9.2593 | 0.8229 | 0.8212 | 0.8229 | 0.0 | 0.8241 | 0.8229 |
| 0.2608 | 6 | 12624 | 0.3450 | 0.25 | 16.9099 | 0.8542 | 0.8541 | 0.8542 | 0.0 | 0.8542 | 0.8542 |
| 0.2117 | 7 | 14728 | 0.3549 | 0.5 | 32.7095 | 0.8611 | 0.8608 | 0.8611 | 0.0 | 0.8611 | 0.8611 |
| 0.1618 | 8.0 | 16832 | 0.3470 | 1.0 | 63.3042 | 0.8657 | 0.8656 | 0.8657 | 0.0 | 0.8657 | 0.8657 |
| 0.1302 | 9.0 | 18936 | 0.4568 | 1.0 | 62.5246 | 0.8600 | 0.8599 | 0.8600 | 0.0 | 0.8600 | 0.8611 |
| 0.1067 | 10.0 | 21040 | 0.4577 | 1.0 | 62.9634 | 0.8704 | 0.8698 | 0.8704 | 0.0 | 0.8704 | 0.8704 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 19