768df56b99429d0add3fb177c05296ff
This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the contemmcm/hate-speech-and-offensive-language dataset. It achieves the following results on the evaluation set:
- Loss: 0.4378
- Data Size: 1.0
- Epoch Runtime: 20.3831
- Accuracy: 0.9091
- F1 Macro: 0.7151
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.1552 | 0 | 1.9155 | 0.0629 | 0.0562 |
| No log | 1 | 619 | 0.7090 | 0.0078 | 2.4594 | 0.7672 | 0.2894 |
| No log | 2 | 1238 | 0.6622 | 0.0156 | 2.6005 | 0.7672 | 0.2894 |
| 0.0158 | 3 | 1857 | 0.4367 | 0.0312 | 2.9326 | 0.8506 | 0.5331 |
| 0.0158 | 4 | 2476 | 0.3438 | 0.0625 | 3.4452 | 0.8797 | 0.5792 |
| 0.3265 | 5 | 3095 | 0.3101 | 0.125 | 4.6903 | 0.8904 | 0.6569 |
| 0.0249 | 6 | 3714 | 0.2976 | 0.25 | 7.2107 | 0.9012 | 0.6273 |
| 0.2678 | 7 | 4333 | 0.2658 | 0.5 | 12.1906 | 0.9014 | 0.7480 |
| 0.2351 | 8.0 | 4952 | 0.2756 | 1.0 | 22.4078 | 0.9093 | 0.6782 |
| 0.168 | 9.0 | 5571 | 0.2892 | 1.0 | 21.4293 | 0.9067 | 0.7640 |
| 0.1469 | 10.0 | 6190 | 0.3359 | 1.0 | 20.9939 | 0.9095 | 0.7436 |
| 0.0978 | 11.0 | 6809 | 0.4378 | 1.0 | 20.3831 | 0.9091 | 0.7151 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 13