8d44004441c73212e62d462d7fe611bd
This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the nyu-mll/glue [mnli] dataset. It achieves the following results on the evaluation set:
- Loss: 0.7350
- Data Size: 1.0
- Epoch Runtime: 367.1770
- Accuracy: 0.7627
- F1 Macro: 0.7617
- Rouge1: 0.7626
- Rouge2: 0.0
- Rougel: 0.7626
- Rougelsum: 0.7630
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.0969 | 0 | 3.0442 | 0.3526 | 0.1977 | 0.3525 | 0.0 | 0.3524 | 0.3525 |
| 1.0574 | 1 | 12271 | 0.9180 | 0.0078 | 6.3581 | 0.5770 | 0.5763 | 0.5769 | 0.0 | 0.5771 | 0.5774 |
| 0.9141 | 2 | 24542 | 0.8569 | 0.0156 | 9.1755 | 0.6140 | 0.6078 | 0.6143 | 0.0 | 0.6142 | 0.6143 |
| 0.8319 | 3 | 36813 | 0.8069 | 0.0312 | 14.8050 | 0.6450 | 0.6409 | 0.6451 | 0.0 | 0.6449 | 0.6449 |
| 0.8084 | 4 | 49084 | 0.7502 | 0.0625 | 26.0503 | 0.6713 | 0.6703 | 0.6712 | 0.0 | 0.6713 | 0.6714 |
| 0.7106 | 5 | 61355 | 0.7001 | 0.125 | 49.2368 | 0.7032 | 0.7022 | 0.7033 | 0.0 | 0.7032 | 0.7035 |
| 0.6739 | 6 | 73626 | 0.6723 | 0.25 | 92.9763 | 0.7158 | 0.7162 | 0.7160 | 0.0 | 0.7159 | 0.7157 |
| 0.5909 | 7 | 85897 | 0.6326 | 0.5 | 181.1791 | 0.7384 | 0.7380 | 0.7384 | 0.0 | 0.7384 | 0.7386 |
| 0.564 | 8.0 | 98168 | 0.6000 | 1.0 | 364.3526 | 0.7570 | 0.7567 | 0.7571 | 0.0 | 0.7570 | 0.7570 |
| 0.4927 | 9.0 | 110439 | 0.6232 | 1.0 | 359.4073 | 0.7602 | 0.7590 | 0.7602 | 0.0 | 0.7605 | 0.7604 |
| 0.4562 | 10.0 | 122710 | 0.6124 | 1.0 | 368.9395 | 0.7632 | 0.7626 | 0.7631 | 0.0 | 0.7633 | 0.7634 |
| 0.3814 | 11.0 | 134981 | 0.7018 | 1.0 | 372.2864 | 0.7623 | 0.7623 | 0.7622 | 0.0 | 0.7622 | 0.7627 |
| 0.3027 | 12.0 | 147252 | 0.7350 | 1.0 | 367.1770 | 0.7627 | 0.7617 | 0.7626 | 0.0 | 0.7626 | 0.7630 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 10