8d44004441c73212e62d462d7fe611bd

This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the nyu-mll/glue [mnli] dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7350
  • Data Size: 1.0
  • Epoch Runtime: 367.1770
  • Accuracy: 0.7627
  • F1 Macro: 0.7617
  • Rouge1: 0.7626
  • Rouge2: 0.0
  • Rougel: 0.7626
  • Rougelsum: 0.7630

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 1.0969 0 3.0442 0.3526 0.1977 0.3525 0.0 0.3524 0.3525
1.0574 1 12271 0.9180 0.0078 6.3581 0.5770 0.5763 0.5769 0.0 0.5771 0.5774
0.9141 2 24542 0.8569 0.0156 9.1755 0.6140 0.6078 0.6143 0.0 0.6142 0.6143
0.8319 3 36813 0.8069 0.0312 14.8050 0.6450 0.6409 0.6451 0.0 0.6449 0.6449
0.8084 4 49084 0.7502 0.0625 26.0503 0.6713 0.6703 0.6712 0.0 0.6713 0.6714
0.7106 5 61355 0.7001 0.125 49.2368 0.7032 0.7022 0.7033 0.0 0.7032 0.7035
0.6739 6 73626 0.6723 0.25 92.9763 0.7158 0.7162 0.7160 0.0 0.7159 0.7157
0.5909 7 85897 0.6326 0.5 181.1791 0.7384 0.7380 0.7384 0.0 0.7384 0.7386
0.564 8.0 98168 0.6000 1.0 364.3526 0.7570 0.7567 0.7571 0.0 0.7570 0.7570
0.4927 9.0 110439 0.6232 1.0 359.4073 0.7602 0.7590 0.7602 0.0 0.7605 0.7604
0.4562 10.0 122710 0.6124 1.0 368.9395 0.7632 0.7626 0.7631 0.0 0.7633 0.7634
0.3814 11.0 134981 0.7018 1.0 372.2864 0.7623 0.7623 0.7622 0.0 0.7622 0.7627
0.3027 12.0 147252 0.7350 1.0 367.1770 0.7627 0.7617 0.7626 0.0 0.7626 0.7630

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
10
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/8d44004441c73212e62d462d7fe611bd

Finetuned
(375)
this model