9121d1d50bbf554a3b7b889335e44376
This model is a fine-tuned version of google-bert/bert-large-uncased-whole-word-masking on the contemmcm/cls_20newsgroups dataset. It achieves the following results on the evaluation set:
- Loss: 0.4598
- Data Size: 1.0
- Epoch Runtime: 70.6265
- Accuracy: 0.8868
- F1 Macro: 0.8859
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 3.1094 | 0 | 4.7110 | 0.0517 | 0.0252 |
| No log | 1 | 499 | 3.0133 | 0.0078 | 5.2606 | 0.0585 | 0.0182 |
| 0.0308 | 2 | 998 | 3.0054 | 0.0156 | 6.0096 | 0.0819 | 0.0375 |
| 0.0548 | 3 | 1497 | 2.4469 | 0.0312 | 7.4072 | 0.2135 | 0.1511 |
| 0.094 | 4 | 1996 | 1.1431 | 0.0625 | 10.8968 | 0.6348 | 0.5936 |
| 1.0747 | 5 | 2495 | 0.8218 | 0.125 | 14.1808 | 0.7442 | 0.7209 |
| 0.6134 | 6 | 2994 | 0.6213 | 0.25 | 22.1164 | 0.8102 | 0.7988 |
| 0.4766 | 7 | 3493 | 0.4772 | 0.5 | 38.6400 | 0.8551 | 0.8536 |
| 0.3394 | 8.0 | 3992 | 0.3879 | 1.0 | 71.2268 | 0.8803 | 0.8803 |
| 0.3034 | 9.0 | 4491 | 0.4178 | 1.0 | 70.4474 | 0.8889 | 0.8884 |
| 0.2577 | 10.0 | 4990 | 0.4691 | 1.0 | 70.2248 | 0.8818 | 0.8797 |
| 0.1981 | 11.0 | 5489 | 0.5198 | 1.0 | 70.6249 | 0.8732 | 0.8718 |
| 0.1636 | 12.0 | 5988 | 0.4598 | 1.0 | 70.6265 | 0.8868 | 0.8859 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 10