99741d8a02311f0bb9052c9d125646d5

This model is a fine-tuned version of distilbert/distilbert-base-uncased-distilled-squad on the nyu-mll/glue [qqp] dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3604
  • Data Size: 1.0
  • Epoch Runtime: 330.9103
  • Accuracy: 0.8930
  • F1 Macro: 0.8855
  • Rouge1: 0.8931
  • Rouge2: 0.0
  • Rougel: 0.8930
  • Rougelsum: 0.8931

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 0.6739 0 10.7956 0.6316 0.3886 0.6314 0.0 0.6316 0.6313
0.5682 1 11370 0.4679 0.0078 13.7434 0.7657 0.7573 0.7658 0.0 0.7657 0.7656
0.46 2 22740 0.4330 0.0156 15.7083 0.7974 0.7811 0.7975 0.0 0.7974 0.7974
0.4022 3 34110 0.3779 0.0312 20.5150 0.8242 0.8163 0.8244 0.0 0.8242 0.8242
0.3727 4 45480 0.3822 0.0625 29.1999 0.8384 0.8237 0.8384 0.0 0.8383 0.8383
0.3457 5 56850 0.3174 0.125 48.1525 0.8600 0.8514 0.8600 0.0 0.8600 0.8600
0.3067 6 68220 0.3041 0.25 82.3618 0.8658 0.8586 0.8658 0.0 0.8658 0.8657
0.2567 7 79590 0.2765 0.5 164.7543 0.8792 0.8721 0.8792 0.0 0.8792 0.8792
0.2553 8.0 90960 0.2829 1.0 319.7446 0.8874 0.8801 0.8874 0.0 0.8875 0.8875
0.219 9.0 102330 0.2857 1.0 329.9028 0.8910 0.8835 0.8910 0.0 0.8911 0.8911
0.1614 10.0 113700 0.2981 1.0 327.9676 0.8922 0.8847 0.8922 0.0 0.8922 0.8922
0.1165 11.0 125070 0.3604 1.0 330.9103 0.8930 0.8855 0.8931 0.0 0.8930 0.8931

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
2
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for contemmcm/99741d8a02311f0bb9052c9d125646d5

Finetuned
(62)
this model

Evaluation results