b770b41b49126880ea34b963e1b495ae
This model is a fine-tuned version of distilbert/distilbert-base-uncased-distilled-squad on the nyu-mll/glue [mrpc] dataset. It achieves the following results on the evaluation set:
- Loss: 1.0880
- Data Size: 1.0
- Epoch Runtime: 4.5971
- Accuracy: 0.7995
- F1 Macro: 0.7422
- Rouge1: 0.8001
- Rouge2: 0.0
- Rougel: 0.7995
- Rougelsum: 0.8001
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.7205 | 0 | 1.0356 | 0.3349 | 0.2509 | 0.3343 | 0.0 | 0.3355 | 0.3349 |
| No log | 1 | 114 | 0.6456 | 0.0078 | 1.7553 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| No log | 2 | 228 | 0.6898 | 0.0156 | 1.3485 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| No log | 3 | 342 | 0.6489 | 0.0312 | 1.3378 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.0205 | 4 | 456 | 0.5963 | 0.0625 | 1.6037 | 0.7052 | 0.5653 | 0.7046 | 0.0 | 0.7046 | 0.7052 |
| 0.0205 | 5 | 570 | 0.5801 | 0.125 | 1.8321 | 0.7070 | 0.5362 | 0.7070 | 0.0 | 0.7064 | 0.7070 |
| 0.0205 | 6 | 684 | 0.5092 | 0.25 | 2.4145 | 0.7577 | 0.7133 | 0.7571 | 0.0 | 0.7583 | 0.7577 |
| 0.1301 | 7 | 798 | 0.4574 | 0.5 | 2.8118 | 0.7983 | 0.7537 | 0.7989 | 0.0 | 0.7983 | 0.7989 |
| 0.3348 | 8.0 | 912 | 0.4280 | 1.0 | 4.6597 | 0.8231 | 0.7883 | 0.8231 | 0.0 | 0.8231 | 0.8231 |
| 0.1845 | 9.0 | 1026 | 0.6303 | 1.0 | 4.3844 | 0.8149 | 0.7843 | 0.8154 | 0.0 | 0.8149 | 0.8149 |
| 0.0995 | 10.0 | 1140 | 0.7343 | 1.0 | 4.3817 | 0.8019 | 0.7727 | 0.8019 | 0.0 | 0.8025 | 0.8019 |
| 0.081 | 11.0 | 1254 | 0.8451 | 1.0 | 4.6516 | 0.8154 | 0.7986 | 0.8154 | 0.0 | 0.8154 | 0.8154 |
| 0.0569 | 12.0 | 1368 | 1.0880 | 1.0 | 4.5971 | 0.7995 | 0.7422 | 0.8001 | 0.0 | 0.7995 | 0.8001 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 9