b770b41b49126880ea34b963e1b495ae

This model is a fine-tuned version of distilbert/distilbert-base-uncased-distilled-squad on the nyu-mll/glue [mrpc] dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0880
  • Data Size: 1.0
  • Epoch Runtime: 4.5971
  • Accuracy: 0.7995
  • F1 Macro: 0.7422
  • Rouge1: 0.8001
  • Rouge2: 0.0
  • Rougel: 0.7995
  • Rougelsum: 0.8001

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 0.7205 0 1.0356 0.3349 0.2509 0.3343 0.0 0.3355 0.3349
No log 1 114 0.6456 0.0078 1.7553 0.6651 0.3994 0.6657 0.0 0.6645 0.6651
No log 2 228 0.6898 0.0156 1.3485 0.6651 0.3994 0.6657 0.0 0.6645 0.6651
No log 3 342 0.6489 0.0312 1.3378 0.6651 0.3994 0.6657 0.0 0.6645 0.6651
0.0205 4 456 0.5963 0.0625 1.6037 0.7052 0.5653 0.7046 0.0 0.7046 0.7052
0.0205 5 570 0.5801 0.125 1.8321 0.7070 0.5362 0.7070 0.0 0.7064 0.7070
0.0205 6 684 0.5092 0.25 2.4145 0.7577 0.7133 0.7571 0.0 0.7583 0.7577
0.1301 7 798 0.4574 0.5 2.8118 0.7983 0.7537 0.7989 0.0 0.7983 0.7989
0.3348 8.0 912 0.4280 1.0 4.6597 0.8231 0.7883 0.8231 0.0 0.8231 0.8231
0.1845 9.0 1026 0.6303 1.0 4.3844 0.8149 0.7843 0.8154 0.0 0.8149 0.8149
0.0995 10.0 1140 0.7343 1.0 4.3817 0.8019 0.7727 0.8019 0.0 0.8025 0.8019
0.081 11.0 1254 0.8451 1.0 4.6516 0.8154 0.7986 0.8154 0.0 0.8154 0.8154
0.0569 12.0 1368 1.0880 1.0 4.5971 0.7995 0.7422 0.8001 0.0 0.7995 0.8001

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
9
Safetensors
Model size
67M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/b770b41b49126880ea34b963e1b495ae

Finetuned
(62)
this model