ce744b05851cf4e216fbb8e2b1207eee
This model is a fine-tuned version of distilbert/distilbert-base-uncased-distilled-squad on the nyu-mll/glue [mnli] dataset. It achieves the following results on the evaluation set:
- Loss: 0.7308
- Data Size: 1.0
- Epoch Runtime: 319.3708
- Accuracy: 0.7793
- F1 Macro: 0.7792
- Rouge1: 0.7793
- Rouge2: 0.0
- Rougel: 0.7791
- Rougelsum: 0.7795
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.1005 | 0 | 3.0779 | 0.3542 | 0.1753 | 0.3541 | 0.0 | 0.3542 | 0.3540 |
| 1.0591 | 1 | 12271 | 0.9117 | 0.0078 | 5.7548 | 0.5910 | 0.5890 | 0.5912 | 0.0 | 0.5912 | 0.5914 |
| 0.8843 | 2 | 24542 | 0.8494 | 0.0156 | 8.2110 | 0.6286 | 0.6208 | 0.6284 | 0.0 | 0.6290 | 0.6289 |
| 0.8003 | 3 | 36813 | 0.7587 | 0.0312 | 13.4061 | 0.6711 | 0.6670 | 0.6710 | 0.0 | 0.6711 | 0.6710 |
| 0.7269 | 4 | 49084 | 0.6992 | 0.0625 | 23.3519 | 0.7078 | 0.7085 | 0.7076 | 0.0 | 0.7080 | 0.7078 |
| 0.6138 | 5 | 61355 | 0.6148 | 0.125 | 42.4668 | 0.7472 | 0.7454 | 0.7474 | 0.0 | 0.7475 | 0.7473 |
| 0.6038 | 6 | 73626 | 0.6194 | 0.25 | 81.9287 | 0.7501 | 0.7505 | 0.7499 | 0.0 | 0.7502 | 0.75 |
| 0.5292 | 7 | 85897 | 0.5717 | 0.5 | 160.9253 | 0.7718 | 0.7707 | 0.7714 | 0.0 | 0.7720 | 0.7719 |
| 0.4832 | 8.0 | 98168 | 0.5510 | 1.0 | 322.0108 | 0.7831 | 0.7834 | 0.7832 | 0.0 | 0.7830 | 0.7831 |
| 0.3897 | 9.0 | 110439 | 0.5706 | 1.0 | 316.3502 | 0.7876 | 0.7869 | 0.7874 | 0.0 | 0.7876 | 0.7877 |
| 0.3573 | 10.0 | 122710 | 0.5990 | 1.0 | 318.3922 | 0.7851 | 0.7828 | 0.7848 | 0.0 | 0.7851 | 0.7849 |
| 0.2757 | 11.0 | 134981 | 0.6851 | 1.0 | 317.6002 | 0.7810 | 0.7814 | 0.7809 | 0.0 | 0.7811 | 0.7809 |
| 0.2328 | 12.0 | 147252 | 0.7308 | 1.0 | 319.3708 | 0.7793 | 0.7792 | 0.7793 | 0.0 | 0.7791 | 0.7795 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 10