ce744b05851cf4e216fbb8e2b1207eee

This model is a fine-tuned version of distilbert/distilbert-base-uncased-distilled-squad on the nyu-mll/glue [mnli] dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7308
  • Data Size: 1.0
  • Epoch Runtime: 319.3708
  • Accuracy: 0.7793
  • F1 Macro: 0.7792
  • Rouge1: 0.7793
  • Rouge2: 0.0
  • Rougel: 0.7791
  • Rougelsum: 0.7795

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 1.1005 0 3.0779 0.3542 0.1753 0.3541 0.0 0.3542 0.3540
1.0591 1 12271 0.9117 0.0078 5.7548 0.5910 0.5890 0.5912 0.0 0.5912 0.5914
0.8843 2 24542 0.8494 0.0156 8.2110 0.6286 0.6208 0.6284 0.0 0.6290 0.6289
0.8003 3 36813 0.7587 0.0312 13.4061 0.6711 0.6670 0.6710 0.0 0.6711 0.6710
0.7269 4 49084 0.6992 0.0625 23.3519 0.7078 0.7085 0.7076 0.0 0.7080 0.7078
0.6138 5 61355 0.6148 0.125 42.4668 0.7472 0.7454 0.7474 0.0 0.7475 0.7473
0.6038 6 73626 0.6194 0.25 81.9287 0.7501 0.7505 0.7499 0.0 0.7502 0.75
0.5292 7 85897 0.5717 0.5 160.9253 0.7718 0.7707 0.7714 0.0 0.7720 0.7719
0.4832 8.0 98168 0.5510 1.0 322.0108 0.7831 0.7834 0.7832 0.0 0.7830 0.7831
0.3897 9.0 110439 0.5706 1.0 316.3502 0.7876 0.7869 0.7874 0.0 0.7876 0.7877
0.3573 10.0 122710 0.5990 1.0 318.3922 0.7851 0.7828 0.7848 0.0 0.7851 0.7849
0.2757 11.0 134981 0.6851 1.0 317.6002 0.7810 0.7814 0.7809 0.0 0.7811 0.7809
0.2328 12.0 147252 0.7308 1.0 319.3708 0.7793 0.7792 0.7793 0.0 0.7791 0.7795

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
10
Safetensors
Model size
67M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/ce744b05851cf4e216fbb8e2b1207eee

Finetuned
(62)
this model