dc22db767834880b27c3b7580d7f0e11
This model is a fine-tuned version of albert/albert-large-v2 on the dim/tldr_news dataset. It achieves the following results on the evaluation set:
- Loss: 0.7312
- Data Size: 1.0
- Epoch Runtime: 13.5041
- Accuracy: 0.7571
- F1 Macro: 0.7977
- Rouge1: 0.7578
- Rouge2: 0.0
- Rougel: 0.7578
- Rougelsum: 0.7571
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.6847 | 0 | 1.5042 | 0.2273 | 0.0883 | 0.2280 | 0.0 | 0.2280 | 0.2273 |
| No log | 1 | 178 | 1.4744 | 0.0078 | 2.5043 | 0.3430 | 0.1799 | 0.3438 | 0.0 | 0.3438 | 0.3430 |
| No log | 2 | 356 | 1.3236 | 0.0156 | 1.7831 | 0.4979 | 0.3396 | 0.4986 | 0.0 | 0.4986 | 0.4979 |
| No log | 3 | 534 | 1.1315 | 0.0312 | 1.8992 | 0.5114 | 0.3249 | 0.5114 | 0.0 | 0.5121 | 0.5114 |
| No log | 4 | 712 | 1.0243 | 0.0625 | 2.3969 | 0.6378 | 0.4864 | 0.6392 | 0.0 | 0.6385 | 0.6378 |
| No log | 5 | 890 | 0.8653 | 0.125 | 3.1190 | 0.6570 | 0.4593 | 0.6577 | 0.0 | 0.6577 | 0.6570 |
| 0.0671 | 6 | 1068 | 0.9167 | 0.25 | 4.5123 | 0.6776 | 0.5398 | 0.6783 | 0.0 | 0.6783 | 0.6776 |
| 0.7706 | 7 | 1246 | 0.7597 | 0.5 | 7.5424 | 0.7159 | 0.5701 | 0.7166 | 0.0 | 0.7159 | 0.7166 |
| 0.6373 | 8.0 | 1424 | 0.6951 | 1.0 | 13.6232 | 0.7259 | 0.7371 | 0.7266 | 0.0 | 0.7266 | 0.7266 |
| 0.603 | 9.0 | 1602 | 0.5889 | 1.0 | 13.3509 | 0.7699 | 0.8055 | 0.7706 | 0.0 | 0.7706 | 0.7706 |
| 0.5294 | 10.0 | 1780 | 0.6513 | 1.0 | 13.4181 | 0.7578 | 0.7974 | 0.7578 | 0.0 | 0.7578 | 0.7585 |
| 0.4812 | 11.0 | 1958 | 0.6771 | 1.0 | 13.6171 | 0.7479 | 0.7803 | 0.7479 | 0.0 | 0.7472 | 0.7479 |
| 0.3728 | 12.0 | 2136 | 0.6993 | 1.0 | 13.4518 | 0.7493 | 0.7976 | 0.7493 | 0.0 | 0.7493 | 0.75 |
| 0.3305 | 13.0 | 2314 | 0.7312 | 1.0 | 13.5041 | 0.7571 | 0.7977 | 0.7578 | 0.0 | 0.7578 | 0.7571 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 2
Model tree for contemmcm/dc22db767834880b27c3b7580d7f0e11
Base model
albert/albert-large-v2