e02eb2c284892973e8f25a68015d5374

This model is a fine-tuned version of google-bert/bert-large-uncased-whole-word-masking on the contemmcm/amazon_reviews_2013 [cell-phone] dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8726
  • Data Size: 1.0
  • Epoch Runtime: 224.2795
  • Accuracy: 0.6757
  • F1 Macro: 0.5942

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro
No log 0 0 1.6530 0 12.5811 0.1864 0.0929
No log 1 1973 1.3305 0.0078 15.4530 0.4914 0.3185
0.0282 2 3946 0.9280 0.0156 16.3489 0.6041 0.4319
0.9532 3 5919 0.8946 0.0312 20.7930 0.6256 0.4793
0.8683 4 7892 0.8571 0.0625 27.4441 0.6392 0.5369
0.8159 5 9865 0.8939 0.125 40.5887 0.6445 0.4911
0.7847 6 11838 0.7965 0.25 66.6236 0.6682 0.5626
0.819 7 13811 0.7356 0.5 119.7266 0.6917 0.6191
0.7425 8.0 15784 0.7798 1.0 224.4164 0.6764 0.6281
0.6695 9.0 17757 0.8099 1.0 223.5268 0.6943 0.6024
0.5917 10.0 19730 0.7884 1.0 223.4544 0.6763 0.6180
0.5931 11.0 21703 0.8726 1.0 224.2795 0.6757 0.5942

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.2.0
  • Tokenizers 0.22.1
Downloads last month
3
Safetensors
Model size
0.3B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/e02eb2c284892973e8f25a68015d5374

Finetuned
(19)
this model