e02eb2c284892973e8f25a68015d5374
This model is a fine-tuned version of google-bert/bert-large-uncased-whole-word-masking on the contemmcm/amazon_reviews_2013 [cell-phone] dataset. It achieves the following results on the evaluation set:
- Loss: 0.8726
- Data Size: 1.0
- Epoch Runtime: 224.2795
- Accuracy: 0.6757
- F1 Macro: 0.5942
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.6530 | 0 | 12.5811 | 0.1864 | 0.0929 |
| No log | 1 | 1973 | 1.3305 | 0.0078 | 15.4530 | 0.4914 | 0.3185 |
| 0.0282 | 2 | 3946 | 0.9280 | 0.0156 | 16.3489 | 0.6041 | 0.4319 |
| 0.9532 | 3 | 5919 | 0.8946 | 0.0312 | 20.7930 | 0.6256 | 0.4793 |
| 0.8683 | 4 | 7892 | 0.8571 | 0.0625 | 27.4441 | 0.6392 | 0.5369 |
| 0.8159 | 5 | 9865 | 0.8939 | 0.125 | 40.5887 | 0.6445 | 0.4911 |
| 0.7847 | 6 | 11838 | 0.7965 | 0.25 | 66.6236 | 0.6682 | 0.5626 |
| 0.819 | 7 | 13811 | 0.7356 | 0.5 | 119.7266 | 0.6917 | 0.6191 |
| 0.7425 | 8.0 | 15784 | 0.7798 | 1.0 | 224.4164 | 0.6764 | 0.6281 |
| 0.6695 | 9.0 | 17757 | 0.8099 | 1.0 | 223.5268 | 0.6943 | 0.6024 |
| 0.5917 | 10.0 | 19730 | 0.7884 | 1.0 | 223.4544 | 0.6763 | 0.6180 |
| 0.5931 | 11.0 | 21703 | 0.8726 | 1.0 | 224.2795 | 0.6757 | 0.5942 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.2.0
- Tokenizers 0.22.1
- Downloads last month
- 3